

Carbon Sequestration

Andreas Weber, Günter Strittmatter, Peter Westhoff Heinrich Heine Universität

Anthropogenic global CO₂ emissions 1850-2019

Cluster of Excellence on Plant Sciences

Leopoldina 2021 Factsheet Climate Change

"Peak Carbon" – w/o sequestration CO₂ will remain high

Solomon et al., 2009 PNAS; not considering tipping points

875 Gt C In current atmosphere (410 ppm CO₂)

450 Gt C In plant biomass

916 Gt C Potential for plant biomass

300 Gt C have been emitted to atmosphere since 1850 105 Gt C current net primary productivity 50% of terrestrial plant biomass lost since Neolithic

Measures for negative CO_2 Emissions

Enforced weathering

Ground-up minerals are added to soil to bind CO_2

Biochar

Partially burned biomass is added to soil and absorbs extra CO₂

CCS

CO₂ is extracted and concentrated from air and stored in soil

Cluster of Excellence on Plant Sciences

Leopoldina 2021 Factsheet Climate Change

BECCS

Plants convert CO_2 to biomass. Biomass is used as energy source to make, e.g., electricity. Released CO2 is directly captured and stored in soil.

Ocean Fertilization

Mineral iron or other nutrients are released into the oceans to increase CO₂assimilation by phytoplankton

3 Gt C per year by BECCS would require 50% of our cropland

Based on: Harper et al., 2018 Nat Commun

Future challenges

Photosynthesis-driven carbon mitigation strategies

- > 300 Gt of atmospheric C must be captured and stored in the form of plant biomass (*w/o considering effects of tipping points*)
- BECCS and other plant-based mitigation strategies can make a substantial contribution
- Must be achieved w/o compromising food security, increasing land use, increasing input of other ressources, increasing loss of biodiversity...

A theoretical annual increase of the world of this initiative.

Salk Harnessing Plants Initiative

TYPICAL PLANT VS. SALK IDEAL PLANT®

Salk Ideal Plants[®] (right) will have a deeper and robust root system that can store more carbon for longer compared to typical plants.

https://www.salk.edu/science/power-of-plants/

Disruptive change in livestock farming is part of the solution

Replacement of livestock by plant products

Vegan meat surrogates for non-vegans

- 100 % vegan; leghemoglobin produced by yeast fermentation
- Massive reduction in land and water use, CO₂/CH₄ footprint

Founder: Patrick O. Brown Investors: Bill Gates, Google Ventures, Horizons Ventures, Khosla Ventures

© Impossible Foods

Action points for future research

Wenn wir ohne Scheuklappen herangehen

- Maximized yield per unit area land (e.g., through increased photosynthetic efficiency)
- Increased water and nutrient use efficiency (e.g., CAM photosynthesis)
- Deep-soil deposition of carbon (aliphatic, hard to metabolize C)
- Increased energy contents of plant biomass (from 16,000 kJ/kg to 30,000 kJ/kg)
- Designer crops that replace livestock products