

Crop Booster

Phosphate

S. Abel¹, F. Degan², T. Desnos³, L., D. Hourcade², M. Hothorn⁴, L. Nussaume^{3*}, J. Paz-Ares⁵, Y. Poirier⁶, C. Plassard⁷ H. Rouached⁸, J. Zhu³.

1 Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany

2 ARVALIS, Institut du Végétal, Paris, France

3 CEA, CNRS, BIAM, UMR7265, SAVE, Aix Marseille Univ, Saint-Paul lez Durance, France

4 Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland.

5 Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid, Spain

6 Department of Plant Molecular Biology, University of Lausanne, Switzerland.

7 INRA, UMR Eco&Sols, 2 Place P. Viala, Montpellier, France

8 Plant, Soil, and Microbial Sciences, Michigan State University, East-Lansing, Michigan, USA

Phosphorus is essential for life

Inorganic phosphate is the sole source of phosphorus for plants

Plants are secreting multiple phosphatases to recover organic Pi

Pi: an essential macronutrient

Internal Pi does not reflect Pi deficiency status

Internal Pi is not a good marker of Pi deficiency!

Symptoms of Pi deficiency are difficult to identify

Anthocyanins accumulation lacks specificity!

Only a fraction of Pi is recoverd by plants

Difficulty to measure bio-available Pi in a soil!

Weak mobility of phosphate in soils

50% of soils are Pi deficient

Mc Donald et al., PNAS 2011

29% Cropland have P deficit

(Mc Donalds et al., 2011. PNAS)

Origin of Pi fertilizers

Sediments: 95% Igneous rock: 5% Pufahl, 2017 Economic Geology

Phosphorus stocks around the world

Many fertilizers contain metals

-> EC regulation modified

Uranite

Pollution

->Land (Radioactive Polonium in US Tobacco) « high quality » phosphate ressources will be exhausted in next future

->Water (favors cyanobacteria bloom)

GPRI & Institute for Sustainable Futures (ISF), Sydney; Cordell et al. 2009

Estimated reserves: 200/300 years (US Geological survey) But all are not high quality grade!

Phosphate starvation

(Péret et al., 2011 Trends Plant Sci; Thibaud et al., Plant J. 2010)

Root architecture is linked with external Pi concentration

Primary root inhibition in response to Pi deficiency Pi

Arabidopsis thaliana

+Pi -Pi

Brassica napus +Pi -Pi

Primary root inhibition highlights links between Pi and metals (Fe,AI)

Reducing Pi increase metals availability It triggers: -modification of root architecture -malate secretion

Cluster root strategies

Very efficient but number of species limited

Top soil foraging: a strategy to cope with Pi deficient soils

Ramaekers et al. Field Crops Research 2010

Gamuyao et al. Nature 2012

pstol1

PSTOL1

PSTOL1 augmente le rendement du riz en sol carencé en Pi

P-deficient soil

PSTOL1 is lost in modern rice cultivar

Maize root architecture variability (mapping lines)

Zurek et al *Plant Physiol.* 2015 Apr;167(4):1487-96.

Interest of controling the metabolism: ex lipids

Phospholipids:

Source of P for animal nutrition Ex lecithin (Phospho Choline) emulsifier

Pi systemic signaling

Conclusion

Rationalize Pi fertilizer use:

Europe lacks Pi ressources

-Necessary to meet EC regulation (to reduce Cd in fields)

- -Measure bioavailable Pi in soils (Olsen methods to develop)
- -Identify fast reliable markers for plant Pi deficiency
- -New generations of fertilizers (precision, micro-dose, delayed release)

-Improve basic knowledge on Pi starvations:

-Selection of crop tolerant to reduce Pi (request adapted field trial)

-Identify the genes behind the QTL

-Exploit biodiversity for Pi deficiency adaptation

-Microorganisms:

-Strong contribution of myccorhizae

-Interactions very difficult to control in field

-> Good application: Greenhouse

