CropBooster-P

Roadmap to future-proof Europe's plants

Horizon 2020 European Union funding for Research & Innovation

Improving micronutrient uptake and use efficiency

- Wednesday June 9, 2021
- Sébastien Thomine, CNRS, Paris-Saclay University
- Ana Assunçao, University of Copenhagen
- Ismail Cakmak, Sabanci University, Istanbul
- Stephan Clemens, University of Bayreuth
- Manuel González-Guerrero, Universidad Politécnica de Madrid
- Adam Nawrocki, PPC ADOB, Poland

Micronutrients impact crop yield and human health

Plant essential micronutrients: boron (B), chlorine (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni) and zinc (Zn).

- Low micronutrient availability **limits crop yield**
- Symptoms of micronutrient deficiency: not always obvious
- Micronutrient deficiency impacts essential plant functions
- Micronutrient availability: **regional differences** in the EU
- Poor knowledge of micronutrient availability in soils

Micronutrients impact crop yield and human health

Micronutrient deficiencies: the most widespread nutritional deficiencies in human populations

- Low micronutrient intake affects human health (hidden hunger),
- Iron deficiency causes anemia
- Zinc repletion is required to fight infection
- Populations at risk: children, pregnant women
- Vegetarians, a growing population in the EU, are prone to micronutrient deficiency.

The basics of micronutrient homeostasis

On a narrow edge between deficiency and toxicity

Approches to study micronutrients

Elemental analysis ICP AES, ICP MS « ionomics »

Speciation analysis

LC ICP MS, « metallomics », « metallo proteomics »

From Chen et al. 2015

<u>Elemental mapping:</u> X-ray fluorescence, SIMS, nanoSIMS, LA ICP MS

State of the art

Mobilization & uptake / snapshot on iron

From Gao et Dubos 2021

State of the art

Regulation and sensing / snapshot on zinc

From Lilay et al. 2021

Key issues: Micronutrient vs global change

Key issues: Micronutrient fertilization

Micronutrients are not members of the NPK club!

Agroecology

Propose smart intercropping systems Micronutrient mobilizing green fertilizers

Chemical fertilizers

```
From Bales et al. 2019
```

Precision combined foliar application

Actions to take I

Raise awareness!

Inform farmers, breeders and the population about the **importance of micronutrition**.

Take micronutrient content into account to determine **market value**.

CropBoosterys

Where is micronutrient availability in european soils limiting?

Actions to take II

Targeting micronutrients for efficient nitrogen fixation

Actions to take III

Targeting micronutrients for human nutrition

Transport pathways from root uptake, or from leaf remobilization to grain filling.

Localization and speciation in grains.

Select varieties and species with improved micronutrient content in edible parts.

Importance of food processing.

Relationships with other focus groups

