

> Focus Group S-5: Improving heat tolerance

Pierre Martre

Matthieu Bogard, Jean-Charles Deswarte, Michael Dingkuhn, Sotirios Fragkostefanakis, Christine Granier, Daniel Van Damme, Heidi Webber, Zoe. A. Wilson, Xinyou Yin

> Threshold and optimum temperatures

Heat stress in crops occurs when temperatures increase above a <u>threshold</u> or an <u>optimum</u> for processes that determine growth and yield

Alghabari et al., JACS 2014

⇒ Reproductive processes

S-5: Improving heat tolerance 09 June 2021 / CropBooser-P WP4 meeting/ Pierre Martre

Parent & Tardieu et al., NP 2012

⇒ Photosynthesis / respiration
⇒ Development processes

Very short heat events can have dramatic consequences on crop production and quality

1 day where T_{max} > 35°C can reduce wheat yield by 33%

Temperature effect	Average reduction in grain yield	
	Flowering (%)	Grain filling (%)
One day where maximum temperature > 30 °C	15.0	5.0
One day where maximum temperature > 35 °C	33.1	7.1

Meta-analysis of 600 wheat field trials in Australia

Hunt et al., FCR 2018

Acclimation and interactions with other stresses

In the field threshold and optimum temperatures change all the time!

Acclimation to growing T

Sage & Kubien, PCE 2007

⇒ Need to integrate knowledge across heat shock, heat wave, and long-term warming

S-5: Improving heat tolerance 09 June 2021 / CropBooser-P WP4 meeting/ Pierre Martre

T thresholds and optima varies with processes and between species and genotypes

Different processes have different T optimum or thresholds

Temperature

Genetic variability of *T* responses (inter >> intra-specific)

Yamori et al., Photosynth. Res 2014

S-5: Improving heat tolerance 09 June 2021 / CropBooser-P WP4 meeting/ Pierre Martre

Porter & Semenov PTRS 2005

> Plant response and adaptation to heat stress

Climate change impact

Occurrence of heat stress

- Increased air temperature
- Increased soil temperature
- Loss of soil moisture
- Adverse soil physical properties
- Altered canopy properties

Plant responses

- Poor plant establishment
- Plant tissue dehydration
- Decreased photosynthesis
- Leaf senescence
- Pollen sterility
- Reduced grain growth

INRA@

S-5: Improving heat tolerance 09 June 2021 / CropBooser-P WP4 meeting/ Pierre Martre

Adaptation to heat stress

- Crop and cultivar choice
- Modified sowing date
- Irrigation
- Antioxidant defense
- Osmo-protectants
- Transpiration colling

Akter et al., ASD 2017

A large number of processes at different scales are involved in plant heat response and tolerance

09 June 2021 / CropBooser-P WP4 meeting/ Pierre Martre

INRA

S-5: Improving heat tolerance

Most relevant unresolved research questions At the agronomic level

- Under which **agro-climatic scenarios** is heat stress tolerance desirable?
- What are **consequences of agroecological/multiservices cropping systems** on heat stress tolerance and resilience?
- How to **develop G x M systems more resilient to heat shocks** and better adapted to future climate scenarios with increased risk of extreme climate events?
- Can **plant/crop canopy architecture** influence microclimate favourably, e.g. by shading of sensitive organs/processes? (links with crop management strategies crop mixture, agroforestry, agrivoltaism,...)

Most relevant unresolved research questions

At the Physiological level

- How **do temperature thresholds or optima change** when crops are exposed to **other stressors**?
- Can we optimize trade-offs between traits for heat and drought adaptation (given uncertain conditions)?
- Is there a need for **organ/tissue level protection** (e.g. leaf/ear wax) to heat stress or is tolerance **at whole plant level** needed?

Hunt et al., FCR 2018

- Where is **temperature perception** detected to drive plant heat stress responses?
- What is the benefit of heat stress **transcriptional acclimation or memory** at upper scales?

S-5: Improving heat tolerance 09 June 2021 / CropBooser-P WP4 meeting/ Pierre Martre

Most relevant unresolved research questions At the genetic level

- Is there enough **genetic variation in the current elite gene pool** used by breeders to improve heat tolerance in current and future climate/management conditions?
- Can there be **cross-generational epigenetic acclimation**? Can pre-acclimated seed be produced?
- Can **gene evolution** that appended during species adaptation to environment with high risks of heat stress be re-enacted using the most up-to-date techniques of molecular breeding?

Most relevant unresolved research questions At the cellular and molecular level

- How is the **temperature perceived and signalled**, which organs are involved?
- How does heat stress link with other stress? Is cross-adaptation likely among several stresses?
- What is the **cellular and molecular basis of thermosensitivity** of reproductive tissues?
- How can we avoid heat effects on **membrane fluidity**?
- Can we avoid heat effects on **intrinsic protein stability** by introducing key factors of resistant plants with increased structural stability into crops?

> What needs to be done to solve the scientific questions?

- Improve crop growth models by considering acclimation of key processes (e.g. fertility) to heat
- Improve crop growth models by considering the response to combined stress (e.g. heat x drought, heat x high evaporative demand)
- Analyse risk scenarios to identify relevant heat stress scenarios (crop growth stages, duration, intensity) and possible interactions with other stressors to better target researches

> What needs to be done to solve the scientific questions?

Heat stress are unpredictable and in most environment have low probabilty

- Develop methods to apply high temperature treatments in the field and in controlled environments
- Develop methods and tools to screen and analyse large populations efficiently for heat tolerance and resilience (genetic markers, <u>phenomics</u>, metabolomics, sensors)

Infra-red thermometry

NMR imagery

Rolletchek et al., PlantPhys 2015 Tracy et al., Plant Methods 2017

> What needs to be done to solve the scientific questions?

- Develop **non-disruptive prebreeding strategies for heat stress tolerance** to efficiently tap in exotic allele pools? (including cross species analyses for trait and physiological/molecular processes identification/characterisation)
- Integrate knowledge and tools across heat shock, heat wave, and long-term warming studies

Projects with application relevance

- Increase the frequency and **pyramid specific morphological traits** (constitutive and easy to phenotype) that exist in current cultivars or breeding germplasms but at low frequency and that are rarely combined in the same genotype
- Establish screening and prebreeding strategies to identify genotypes that are temperature resilient but do not depend on extensive irrigation
- Identify **how crops sense temperature** in order to generate an effective strategy to generate microclimate-based approaches that would mitigate the impact of heat stress under field conditions
- Develop new genetic and agronomic solutions to **improve microclimates** of crops to minimize the effects of heat and drought stress **Crop** mixtures Agrovoltaims Agroforestry

Long coleotile

Rebetzke et al., Euphytica 199

Glaucousness (epicuticular wax)

Leaf rolling

p. 15 Erect leaf Hunt et al., FCR 2018