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Multi scale phenotyping for crop performance in precise 

environmental scenarios: combining phenomics in controlled 

conditions with multi-site field experiments

What to measure ?

We are interested by physiological mechanisms but

- Genetics needs 100s genotypes: physiology at high throughput

- To what extent are they related to yield or yield-related traits 

ABA – yield                :  large phenotypic distance, context dependent effect 

Photosynthesis – yield  : large

grain number – yield : small

Phenotypic distance: the temporal, spatial, and organization scales to be crossed

between two phenotypic traits; can be measured via the number of equations,

parameters, and input variables necessary to derive one trait from the other

Traits have increasingly conditional effects with phenotypic distance

Tardieu et al 2018 Ann rev Plant Biol
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I propose: 

Mechanisms at higher level involve evolution (mechanisms constrained into strategies)

‘not all genotypes possible everywhere’ 

So the genetic variability can be modelled at all scales

Tardieu et al 2017 Current BIol. ; Taylor et al 2019, PNAS
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“High throughput physiology”: stomatal conductance and photosynthesis at plant level



1800 rhizotrons (Dijon)2400 plants (Montpellier

Virtual plants/canopies
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“High throughput physiology”: stomatal conductance and photosynthesis at plant level



Field phenotyping (Phenomobiles / gantries / drones)
Image analysis for traits : Green fraction, light interception, photosynthesis biotic status

Liu et al 2017

Ag. Forest Met

“High throughput physiology”: stomatal conductance and photosynthesis at plant level



Light interception and RUE from Imaging and Modelling
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“High throughput physiology”: stomatal conductance and photosynthesis at plant level

Tardieu et al 2017 Current Biol



Maximum stomatal conductance from water flux  

(inversing the Penman Monteith equation)
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Strategy: integrating traits + their genetic architecture in models (not genes)

Alvarez Prado et al 2017 

Plant Cell Environment

“High throughput physiology”: stomatal conductance and photosynthesis at plant level
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“High throughput physiology”: stomatal conductance and photosynthesis at plant level



For us, straightforward that phenotyping participates to breeding

BUT trait-based selection not in current breeding pipe lines

To what extent are detailed phenotypes related to yield ?



But what is THE yield and THE genetic control of yield ? 

For us, straightforward that phenotyping participates to breeding

BUT trait-based selection not in current breeding pipe lines

Richard and Sadras 2014 J Exp Bot (as a sample)
- ‘The limited success of indirect selection to improve crop yield’

- ‘Indirect methods, based on secondary traits (…) a complement  

to direct selection for yield’

… Is Phenomics useful at all for improving crop performance ? 

To what extent are detailed phenotypes related to yield ?
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To what extent are detailed phenotypes related to yield ? Conditional effect of traits
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Efficient phenotyping technique References

Stringent stomatal control - + =/+ - - + + CT 82,104

slow/sensitive leaf growth - + =/+ - + + = Imaging, displacement transducers 36

early flowering  +  ++ +  -  +/=  -  + Record in field networks 77,83

sensitive grain abortion  --  ++  +  -  +/= +/-  - Record in field networks 98

High hydraulic conductance + - + ++ - - - HPFM, EFM 107

Efficient root system upper layers + - - + + = = Soil water status(diverse) 26

Deep rooting /efficient RS depth - - + + - = - Water uptake, shovelomics 76

high transpiration (intrinsic) =  --  - ++ - +  - 18O discrimination, CT 82

Long coleoptile (seedling establishment) + = = = = = = Imaging 110

CAM - =/+ - - - ++ ++ Gas excja,ge, CT 12

glaucousness  + =  = + +  +  = CT 110

Consequence on yield per soil and climate scenario Consequences on long-term, 

whole-plant properties

short-term 

traits

intrinsic / 

integrated 

traits

 
Tardieu et al 2018 Ann Rev Plant Biology.
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Combining phenomics, modelling and genomic prediction



Traits, 1 genotype
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Combining phenomics, modelling and genomic prediction



S. Alvarez 
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Genetic dissection
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Genomic prediction of maize yield across European environmental scenarios
Millet et al 2019 Nature Genetics
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Genomic prediction of maize yield across European environmental scenarios
Millet et al 2019 Nature Genetics
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Genomic prediction of maize yield across European environmental scenarios
Millet et al 2019 Nature Genetics
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Genomic prediction of maize yield across European environmental scenarios
Millet et al 2019 Nature Genetics
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A multi-scale problem, multi scale solutions

- Physiological mechanisms can be measured in high precision platforms

Their effects, and that of underlying alleles, depends on environmental scenarios

- Platforms cannot represent fields

… but a field does not represent another field!

- Multi site field experiments: where and when alleles are favourable

for yield, and increasingly for traits

- Difficult to disentangle environmental effects and to measure some traits in the field

High throughput still essential : relate the genetic variabilities of traits and yield.

Future of phenomics : development of methods to link phenotypic 
scales (modelling)  and include them in genomic prediction

FAIR Data management 

Conclusion: linking multi scale phenomics, modelling and genomic prediction



C Welcker
Ll Cabrera

S. Alvarez 
Prado

Field experiments Genetic analyses

Moulon, 
A Charcosset
S Nicolas

RAGT, Euralis
MaisAdour

B. Parent E. MilletO. Turc

Platform experiments, modelling, GWAS

N. RancT. Presterl S Praud

Wageningen
F van Eeuwijk
Willem Kruijer

Acknowledgements


