Multi scale phenotyping for crop performance in precise
environmental scenarios: combining phenomics in controlled
conditions with multi-site field experiments
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Multi scale phenotyping for crop performance in precise
environmental scenarios: combining phenomics in controlled
conditions with multi-site field experiments

What to measure ?

We are interested by physiological mechanisms but
- Genetics needs 100s genotypes: physiology at high throughput
- To what extent are they related to yield or yield-related traits

Phenotypic distance: the temporal, spatial, and organization scales to be crossed
between two phenotypic traits; can be measured via the number of equations,
parameters, and input variables necessary to derive one trait from the other

Traits have increasingly conditional effects with phenotypic distance
Tardieu et al 2018 Ann rev Plant Biol

ABA - yield . large phenotypic distance, context dependent effect

Photosynthesis — yield . large
grain number - yield : small
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Minute to weeks
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Canopies in a range of
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Scale Cell- cm Organ(s) Plant or Canopy environments
Minutes / days Minute/days Minute to weeks Weeks to months
: Transcripts
Biophysics
Networks
Boolean and differ.
egualio
Models | ,
Abstraction | Explicit genes/metabolites,
(most often)| no explicit organs,

Vialet Chabrand et al 2017
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Cam?2 Canopies in a range of
Cell- cm Organ(s) Plant or Canopy environments

Scale . :
Minutes / days| Minute/days Minute to weeks Weeks to months

Mechani Transcripts Hydraulics
€CNaniSms| |on channels | Metabolism

Biophysics hormones
Networks Differential Equ. ;
Boolean and differ. gradients
%9;?‘“0” Conserved fluxes
{ . de

Models
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Abstraction | Explicit genes/metabolites,
(most often)| no explicit organs,

No explicit genes,
no explicit organs,
Explicit fluxes (m2s),

Vialet Chabrand et al 2017 Caldeira et al 2014
Plant Phy Nat Com
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Canopies in a range of
Scale Cell- cm? Organ(s) Plant or Canopy eI:r)wironmentsg
Minutes / days Minute/days Minute to weeks Weeks to months
. Transcripts Hydraulics dinati
lon channels Metabolism Hormones, nutrients
Biophysics hormones
Networks Differential Equ. ;| Fonctional/
Boolean and differ.| gradients Structural (FSPM)
equalions Conserved fluxes| .
Models | .,
Abstraction | Explicit genes/metabolites, No exp/!'c!'t genes, No gxplicit genes,
(most often)| no explicit organs, no explicit organs, Explicit organs (x,y,z),
Explicit fluxes (m~2s1),| No explicit fluxes

Vialet Chabrand et al 2017

Plant Phy

Caldeira et al 2014
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Plant Phy
Pradal et al 2015



What to measure ? |NRA@

science for people, life & earth
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Explicit fluxes (m2s?),| No explicit fluxes No explicit fluxes in plants
Vialet Chabrand et al 2017 Caldeira et al 2014 Mairhofer et al 2012 Millet et al 2019 Nat Gen
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Pradal et al 2015
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Tardieu et al 2017 Current Blol. ; Taylor et al 2019, PNAS

| propose:

Mechanisms at higher level involve evolution (mechanisms constrained into strategies)
‘not all genotypes possible everywhere’

So the genetic variability can be modelled at all scales



“High throughput physiology”: stomatal conductance and photosynthesis at plant level |NRA@

science for people, life & earth



“High throughput physiology”: stomatal conductance and photosynthesis at plant level |NRA@
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Field phenotyping (Phenomobiles / gantries / drones)
Image analysis for traits : Green fraction, light interception, photosynthesis biotic status
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“High throughput physiology”: stomatal conductance and photosynthesis at plant level |NRA@

Perez et al. 2019 PCE
Chen et al 2019 J .Exp Bot

Tardieu et al 2017 Current Biol
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Light interception and RUE from Imaging and Modelling
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“High throughput physiology”: stomatal conductance and photosynthesis at plant level

Maximum stomatal conductance from water flux
(inversing the Renman Monteith equation)
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“High throughput physiology”: stomatal conductance and photosynthesis at plant level |NRA@
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We can predict traits and model parameters from the genotype
regression of phenotypic values with 750 000 marker values)

Training set; R? = 0.86
® New Genotypes; R? = 0.87
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For us, straightforward that phenotyping participates to breeding
BUT trait-based selection not in current breeding pipe lines



To what extent are detailed phenotypes related to yield ? NN\~ mrt

For us, straightforward that phenotyping participates to breeding
BUT trait-based selection not in current breeding pipe lines

Richard and Sadras 2014 J Exp Bot (as a sample)
- ‘The limited success of indirect selection to improve crop yield’
- ‘Indirect methods, based on secondary traits (...) a complement

to direct selection for yield’

... Is Phenomics useful at all for improving crop performance ?

But what is THE yield and THE genetic control of yield ?
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Yield and ranking of genotypes differ between fields
Most QTLs have positive, negative or no effects depending on scenarios
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Consequence on yield per soil and climate scenario
1 2 3 4 5
Early (around

Terminal and Terminal and

sowing) and mild to strong mild to stron Mild WD Mild WD
targeted phenotypic traits mild WD mild . & . & high ET, high  high ET, high
WD, high ET, WD, high ET, - .
ET, shallow T, deep soil T, shallow soil

] shallow soil deep soil
soil

short-term
traits

intrinsic/
integrated
traits

Stringent stomatal control
slow/sensitive leaf growth

early flowering
sensitive grain abortion

High hydraulic conductance
Efficient root system upper layers
Deep rooting /efficient RS depth

high transpiration (intrinsic)

Long coleoptile (seedling establishment)
CAM
glaucousness

Tardieu et al 2018 Ann Rev Plant Biology.
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Consequence on yield per soil and climate scenario
1 2 3 4 5
Early (around
A Terminal and Terminal and

sowing) and . . Mild WD Mild WD
mild to strong mild to strong

targeted phenotypic traits mild WD mild WD, high ET, WD, high ET, high ET, high high ET, high
ET, shallow . . T, deep soil T, shallow soil
] shallow soil deep soil
soil
short-term Stringent stomatal control - + =/+ - -
traits slow/sensitive leaf growth - + =/+ - +
early flowering + ++ + - +/=
sensitive grain abortion -- ++ + - +/=
High hydraulic conductance + - + ++ -
intrinsic/ Efficient root system upper layers + - - + +
integrated Deep rooting /efficient RS depth - - + + -
traits high transpiration (intrinsic) = -- - ++ -
Long coleoptile (seedling establishment) + = = = =
CAM - =/+ - - i}
glaucousness + = = + +

Tardieu et al 2018 Ann Rev Plant Biology.
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Traits, 1 genotype

One can measure genotype-specific traits in platforms
(platforms can represent field, after some effort)
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Traits, 250 genotype

One can measure genotype-specific traits in platforms
Traits are heritable
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Genomic prediction of maize yield across European environmental scenarios
Millet et al 2019 Nature Genetics

1. Plateform 250 geno
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Genomic prediction of maize yield across European environmental scenarios
Millet et al 2019 Nature Genetics

1. Plateform 250 geno
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Combining phenomics, modelling and genomic prediction

Genomic prediction of maize yield across European environmental scenarios
Millet et al 2019 Nature Genetics
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1. Plateform 250 geno

Thermal time

Floral Silk Grain
transition initiation maturity
" Vegetative ~ Flowering ~  Grainfilling =

3. Response curves, 250 geno
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Combining phenomics, modelling and genomic prediction

Genomic prediction of maize yield across European environmental scenarios
Millet et al 2019 Nature Genetics
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1. Plateform 250 geno 3. Response curves, 2so geno
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Conclusion: linking multi scale phenomics, modelling and genomic prediction INRAZ/
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A multi-scale problem, multi scale solutions

Physiological mechanisms can be measured in high precision platforms
Their effects, and that of underlying alleles, depends on environmental scenarios

Platforms cannot represent fields
... but a field does not represent another field!

Multi site field experiments: where and when alleles are favourable
for yield, and increasingly for traits

Difficult to disentangle environmental effects and to measure some traits in the field
High throughput still essential : relate the genetic variabilities of traits and yield.

Future of phenomics : development of methods to link phenotypic
scales (modelling) and include them in genomic prediction

FAIR Data management
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