CropBooster-P

Roadmap to future-proof Europe's plants

Societal Needs and Expectations

Horizon 2020 European Union funding for Research & Innovation

Public engagement with society stakeholders

- Deepening on earlier focus groups (presented by Jess) with a focus on societal response
- Assess societal stakeholders' values, needs and expectations
- Analyse their perception regarding
 - Important crop improvement strategies (needs) and
 - NPBTs role in crop improvements (expectations)

2

Interviewed 30 societal stakeholders

- 7 online workshop focus groups: mid-November 2020 and late January 2021
- 7 from Italy, Spain, France and Portugal (Mediterranean)
- 8 from Belgium, Netherlands, Switzerland, Germany, Greece and Lithuania (NW Europe)
- 15 from Romania (Eastern Europe)
- plant breeders (n=6), agri-food researchers (n=14), reporters (n=1), farmer/politician (n=1), businesses (n=1) and (inter/non-) governmental organisations (n=7)

Selected results – Main challenges perceived

- Increasing crop yields to meet the demand of a growing population and a changing European market
- Rural-urban migration and changing labour dynamics were significant problems exacerbated by the pandemic
- "... we have to provide farmers with new ways to make agriculture viable; otherwise, we are going to have a huge problem..." Eastern European Workshop
- Climate change was seen causing (a)biotic stress in crops, leading to crop losses and reduced yields

Selected results – Strategies for future proofing crops

Selected results – Strategies for future proofing crops

- Regarding crop improvement strategies, societal stakeholders in most focus groups discussed the need to
 - **increasing protein content** as an important plant breeding strategy pivotal for <u>reducing Europe's protein imports</u>.
 - improving fatty content in plants that grow in Europe's climate and soils could help <u>achieve palm oil independence</u> and <u>reducing deforestation</u> in South America

"... we see a huge amount of imports of soybean and other proteins into Europe... and I think becoming more independent of those imports, it is advisable." North West European Workshop Focus Group #1

Selected results – Strategies for future proofing crops

- Strategies that aimed at effective and efficient use of resources were essential
- In particular, they mentioned the need to improve
 - water use efficiency
 - nutrient use efficiency and
 - Photosynthetic efficiency in crops

"... and by increasing it [nutrient use efficiency] you don't have to add fertilisers with nitrogen and phosphorus." – Mediterranean Workshop Focus Group #2

Societal stakeholders views on NPBTs

8

Selected results – Views on NPBTs

- They cited those techniques that seek to develop new plant varieties must be regulated.
- They expect classical Genetic Modification (trans-genesis and similar) and precision breeding techniques to be <u>regulated separately</u>.
- Current regulation was outdated and treated new plant breeding techniques as traditional genetic modification.

"I think the very hesitant approach of the EU, about the regulation of these techniques, does not contribute to consumer confidence in these technologies." – Societal Stakeholder North West European Workshop Focus Group #3

Selected results – Acceptability of NPBTs

- Favour innovation but expressed their scepticism and views on whether the public would accept them
- Contested the acceptability of a few techniques, particularly those for which they perceived, the risks, outweigh, the benefits to the natural ecosystem.
 - Techniques such as random mutation breeding, GMOs specifically transgenic crops, were **criticised** as being imprecise.

"... by using these chemical agents and radiation, you create so many mutations that might also create many unintended mutations. The organic movement sees potential risk in using this technique." – North West European Workshop Focus Group #3

10

Selected results – Expectations regarding NPBTs

- Raised the issue of safety and traceability as being of critical importance to avoid genetic modification pitfalls.
- They mentioned that to gain consumer acceptance there has to be <u>communication</u> with society and citizens on
 - the problems the agriculture sector faces,
 - plant breeding outcomes,
 - the potential negative consequences (risks) &
 - the benefits to the consumer

"It is vital to inform the society and consumers because theses discussions can help scientists explain the safety of this method, and avoid the mistakes made during GMO's development." – North West European Workshop Focus Group #2

Summary of the results

- Impacts of climate change and meeting the food demands of a growing population
- Increasing i) water-use efficiency, ii) protein content and iii) photosynthesis in combination with farm-level strategies such as promoting sustainable local farming, reducing food waste, increasing resiliency to biotic and abiotic stresses are crucial future-proofing
- The most critical factors limiting the acceptance of NPBTs is the lack of i) precise regulation, ii) openness and transparency in communicating the risk and benefits of NPBTs and iii) general lack of communication between plant scientists, agri-businesses, consumers and policy-makers

Conclusion

- Combine crop improvements, farm-level and food systems strategies to meet local and global food demand and ensure sustainability, resilience and quality
- Take a pro-active approach in regulating NPBTs
- Foster innovation, openness and transparency among plant scientists, agribusinesses, consumers and policy-makers in the development and deployment of new plant genetic material

How to use the scenarios in CropBoosterP – from static opinions to simulating development

A cognitive map of European agri-food systems

- To build a cognitive map of the current agri-food system
- Six CropBooster-P partners from WPs 1 to 3
- They had expertise in plant science, agronomy, environmental science, agri-business, marketing and consumer science
- To develop the agri-food system map we organised three focus groups sessions taking us about 60 person-hours to create the cognitive map

A cognitive map of European agri-food systems

17

Current states of system variables

Crop yield		Moderate to high		
Plant quality ou	tput	Moderate to high Low to		
Crop resilience Farm output	Ecosystem services & 1	functioning	<i>Low to moderate</i>	
	Climate change		Moderate	
	Agriculture land availa	bility	Moderate	
	Va	alue premiums		High
	Co	ost of doing busi	ness	High
	Fa	rm profitability		Moderately low

Assessing the impact NPBTs under various CropBooster-P priorities

Compare baseline against seven target outcomes

- Assess the impact of each CB option (3)
- Assess the impact of combined technology deployment under the four CB scenarios (4)

		Moderately high	Moderately high	Moderate	High	Moderate
		Cropy yield	Plant Quality	Crop resilience	Farm output	Farm profitability
Baseline scenarion		0.712	0.788	0.687	0.768	0.721
Technology deployment I	Yield	0.788	0.791	0.697	0.779	0.723
Technology deployment II	Nutritional quality	0.723	0.843	0.697	0.778	0.724
Technology deployment III	Crop resilience	0.733	0.799	0.765	0.773	0.722
Technology deployment IV	Yeild and Nutritionl quality	0.788	0.843	0.697	0.786	0.7263
Technology deployment V	Yeild ansd crop resilience	0.796	0.799	0.765	0.781	0.724
Technology deplyment VI	Nutritional quality and Crop resilience	0.733	0.849	0.765	0.78	0.725
Technology deplyment VII	YNS	0.796	0.849	0.765	0.788	0.7268
	Scale	0.5-0.7	0.6-0.8	0.7-0.9	0.8-1	
		small increase	moderate increas	large increase	very large ind	crease

Assessing the impact NPBTs under various socio-ecological and technological scenarios

Our aim was to assess the socio-ecological impacts NPBTs under potential future scenarios

Scenarion Reject tech		C1	C2	СЗ					
	Identify three concepts you want changed in the systems for this scenario	Agronomic practicies	Convential breeding	Nature inclusive agro practices	Imports	Climate change	Exports	Science advisory	
	What is the new state of the concept? Describes using lingustic terms	Low to moderate	High	High	Very high	Moderlately high	Very low	Relative	
Scenarion Food emergency		C1	C2	C3					
	Identify three concepts you want changed in the systems for this scenario	NPBTs (influence crop resilience & yield	Climate change	Ecosystems services	Land availability/use	Agronomic practice (Industrial)	Exports	Imports	Science advisory
	What is the new state of the concept? Describes using lingustic terms	Very high	Very high	Very low	High	Very high	Very low	Very high	Relative
Scenarion Consumer choice		C1	C2	C3					
	Identify three concepts you want changed in the systems for this scenario	NPBTs (influences plant quality)	Nature inclusive agro practices	Climate change	Agronomic practice (Industrial)	Healthly sustainable	Societal expectation		
	What is the new state of the concept? Describes using lingustic terms	Very high	Moderate	State same as baseline (influnce changed)	State same as baseline (influnce changed)	High to very high	State same as baseline (influnce changed)		
Scenario Plant-o-vation		C1	C2	C3					
	Identify three concepts you want changed in the systems for this scenario	NPBTs (all three CB options priortised)	Climate Change	Agronomic practice (Industrial)	Nature inclusive agro practices	Scientific advisory			
	What is the new state of the concept? Describes using lingustic terms	Very High	Moderate	Very High	Moderate	State same as baseline (influnce changed)			

Baseline vs Plantovation

Farm productivity	Initial state in fuzzy	Relative	
variables	linguistics	change	Absolute change
Baseline			
Crop yield	Moderate to high	0.699	High to moderately very high
Plant quality output	Moderate to high	0.783	High to moderately very high
Crop resilience	Low to moderate	0.675	Moderate to high
Farm output	High	0.766	Very high
Plantovation			
Crop yield	Moderate to high	0.808	Moderately very high to very high
Plant quality output	Moderate to high	0.877	Moderately very high to very high
			Moderately high to moderately very
Crop resilience	Low to moderate	0.799	high
Farm output	High	0.793	Very high (high certainty)

Baseline vs Plantovation

	Initial state	Relative	
Ecologicial variables	in fuzzy linguistics	change	Absolute change
Baseline			
Ecosystem services & functioning	Low to moderate	0.223	Very low to moderately very low
Climate change	Moderate	0.62	Moderately high
Agriculture land availability	Moderate	0.394	Moderately low

Scenario I - Plantovation

Ecosystem services & functioning	Low to moderate	0.332	Moderately very low to low
Climate change	Moderate	0.63	Moderately high
Agriculture land availability	Moderate	0.393	Moderately low

Baseline vs Plantovation

	Initial state in fuzzy		
Economic variables	linguistics	Relative change	Absolute change
Baseline			
Value premiums	High	0.656	Moderately very high
Cost of doing business	High	0.764	Very high
Farm profitability	Moderately low	0.721	Moderately high

Scenario I – Plantovation

			Moderately very high (more
Value premiums	High	0.672	certain)
Cost of doing business	High	0.764	Very high
Farm profitability	Moderately low	0.728	Moderately high (more certain)

Summary

- NPBTs <u>moderately increase</u> farm productivity and <u>reduces</u> agriculture's impact on ecosystem services and functioning
- NPBTs also contribute to a <u>very small increase</u> in farm output, value premiums and farm profitability
- So why does it only increase farm profitability ever so slightly?
 - Does globalisation and the reducing land availability increase costs of doing business?
 - Does that much power lie with retail to suppress farm profitability?
 - Also we don't know the influence of NPBTs in changing the influence that agronomic practices has on the cost of business

Thank You!

www.CropBooster-P.eu