

CropBooster-P

Deliverable 1.3

Title: Digested outcome and recommendations of the workshop regarding YIELD improvement

Start date of the project: **November 1st, 2018** / Duration: **36 months** Planned delivery date: M8 (June 2019) Actual submission date: 15 July 2019 Work package: WP1 / Task: 1.2

Work package leader: ULANC Version: Draft 1 Date of version: July 2019

Deliverable leader: VIB

Dissemination level	Public

Table of content

- 1. Introduction
- 2. Objective
- 3. Work plan for Tasks 1.2, 1.3, 1.4 and 1.5
- 4. Partners and fields of expertise
- 5. Meetings and teleconferences
- 6. WP1 Task 1.1 Input for 2-day Scenario Building workshop (Brussels)
- 7. Outcome WP1 Task 1.1 2-day Scenario Building workshop (Brussels)
- 8. Assessment and digestion of the outcome and recommendations of the workshop for T1.2
 - a. Framework for data collection proposed to the participants of the workshop
 - b. Feedback from the participants at the scenario building workshop, F2F and teleconferences meetings
 - c. Revised template for data collection
 - d. Data collection Survey construction
- 9. ExCom meeting
- 10. Future deliverables

1. Introduction

The future demands for our crops will be tremendous, both in terms of level and stability of production and nutritional security. In addition, food systems will have to adapt towards a non-fossil carbon economy and will need to be able to cope with a climatic unstable environment. All these changes will result in the need for high-yielding sustainable crops while maintaining a high nutritional quality. So far, however, Europe has no long-term strategy for future proofing its crops.

How to sustainably increase yields and ensure nutritional quality, i.e. how adapting crops for the future climates of Europe, but doing so with a decrease in inputs such as water, chemical fertilizers and pesticides? To get insight into various aspects of plant improvement, we aim to generate an overview on the current state of crop production within Europe, including breeding methods and technologies, and breeding targets from traits to genes. Compiling this information could contribute to the development of a 'Research toolbox' to help establish the future directions of crop research.

The WP1-'Research toolbox' will comprise an overview of the current and future focus areas and approaches to improve yield. This will include a survey of published scientific literature for all major aspects of crop yield in major, minor and niche crop species. Current and future methods and technologies to improve yield and existing geographical trends will be included in this study. Actual crop yield is the result of yield potential and factors influencing yield, such as environmental stress (drought, heat, cold, etc.). In Task 1.2 (Yield), we will only focus on yield potential. At a later stage, however, the outcome of T1.2 will be combined with the outcome of T1.3 (Sustainability) to obtain an overall view of crop yield determination.

2. Objective

WP1-Task 1.2 aims to map the different existing and future subject areas for yield improvement. We expect these to vary across the diverse agricultural regions of Europe. Literature studies, technology studies (incl. models) and trait studies will be performed to list and collect all available strategies, options and technologies to improve yield in different crop species. This will be a cataloguing exercise ('mapping'), yielding a bibliographic repository and internal database. Ultimately, common strategies/technologies/traits linking yield (T1.2) with nutritional quality (T1.3) and sustainability (T1.4) objectives will be identified and will serve as a basis for discussions with the stakeholders group (SHG). Their expert advice will be an important input to the 'Research toolbox' (T1.5).

3. Work plan for Tasks 1.2, 1.3, 1.4 and 1.5

Overall work plan

To facilitate data collection, and in line with Tasks 1.3 and 1.4, WP1 Task 1.2 is divided into distinct phases:

- 1. Definition of the template for data collection (see below), task division among the partners according to their expertise and areas of interest (see below, by end M5)
- 2. Alignment of the template for data collection with Tasks 1.3 and 1.4
- 3. Data collection/filling templates (by end M11)
- 4. Compilation, harmonization and filling the gaps in the collected data
- 5. Arranging the collected information in a comprehensive format and upload to a central location (as part of T1.5, by end M12)
- 6. Integrate and digest the output of Task 1.2, 1.3 and 1.4, identify overlaps, trade-offs, etc. and align the data obtained by the different subtasks to generate a 'Research toolbox'.

Data collection template

- **MAPPING Bibliography:** a comprehensive literature survey to identify traits, and when available, pathways, processes and genes that have the potential to contribute to an increase in yield potential
- **GAPPING Gaps:** identification of the gaps there are in our current knowledge that may optimize yield in crop species
 - → A 'mapping' and 'gapping' approach to identify traits, processes, and when available, pathways, processes and genes of which the potential can be exploited using a range of different technologies to increase Yield potential in distinct crops.

A common template between the subtasks of WP1 (yield, nutritional quality and sustainability) was proposed to be developed to facilitate data collection and assimilation of overlaps between the subtasks for the final deliverable. This template would form the basis of a longer document outlining the current scientific progress and approaches known to improve plant traits. A technical annexe may finally also be included to summarize key technologies and methods to improve crop yield, nutrition quality and sustainability.

Organisation name	Short name	Country	Area(s) of specialization
Københavns Universitet	UCPH	Denmark	 photosynthesis; regulation of photosynthesis, chloroplast biology, thylakoid membrane plant development, microProteins, tissue culture
Consiglio Nazionale delle Ricerche	CNR	Italy	 photosynthesis: estimation of the diffusion resistances to CO2 in leaf mesophyll; study of the relationship between electron transport rate and photosynthesis; study of CO2 refixation in leaf mesophyll. Stress physiology: study of the effect of biotic and abiotic stresses on photosynthesis limitations and plant productivity.

4. Partners and fields of expertise

Organisation name	Short name	Country	Area(s) of specialization
			 Biosynthesis and emission of biogenic volatile organic compounds: study of the relationship between isoprenoid emissions and photosynthesis; study of the relationships between biogenic emissions and environmental pollution. protein synthesis, structural maturation, transport and degradation in the secretory pathway of plant cells, Protein co-translational and post-translational modifications, Molecular chaperones and enzymes assisting protein structural maturation, Abiotic stress response, Seed storage proteins, Ribosome-inactivating proteins, Wheat structural genomics
Europese Organisatie voor Wetenschappelijk Plantenonderzoek	EPSO	Belgium	EPSO's mission is to improve the impact and visibility of plant science in Europe, providing advice on science policy towards a strategic approach and critical mass funding for basic and applied research across Europe
Heinrich-Heine-Universitaet Duesseldorf	UDUS	Germany	 photosynthetic carbon assimilation and yield, such as C3/C4 photosynthesis, photorespiration, synthetic biology approaches to mitigate the effects of photorespiration. source/sink relationships and their influence on yield the role of rapid acclimation to fluctuating environmental conditions (i.e., change in light intensity)
Julius Kuehn-Institut Bundesforschungsinstitut fuer Kulturpflanzen	јкі	Germany	 employing new molecular technologies in agriculture (classic GMO, GE, Synthetic biology), but also novel crops, from basic science to molecular farming or agricultural production/passing statements on the safety of GMO exploring the application of GE methods in different plants with different traits, technologies to get an overview of GE applications and impacts at the molecular/plant level genome editing in different plants
Centre National de la Recherche Scientifique	CNRS	France	transmembrane ion transport with strong connexions to: - plant nutrition: nitrate uptake and distribution as well as essential and toxic metal (Fe, Mn, Zn) uptake, transport and seed storage - toxic metal uptake in plants - control of stomatal aperture

nhatasur	
- photosyl	othetic electron transport, especially regulation
of p	photosystem II, alternative electron transport
path	ways, production site of the different reactive
	oxygen species and acclimation responses
-	biochemistry, metabolic engineering and
	functional analysis of plant metabolism
plant and	d crop physiology, photosynthesis, agronomy,
University of Nottingham UNOTT UK	drought, nutrient use efficiency, nitrogen
	(predominantly wheat and rice)
- (quantitative genetics, genetic control of tomato
	fruit quality (sensory and nutritional), fruit and
	vegetable quality in general
	plant and crop physiology (maize, wheat,
	soybean, pea), breeding, cultivar and species
	mixtures
	- Large-scale phenotyping, genomics,
Institut National de la INRA France	metabolomics
Recherche Agronomique -	agronomy, drought, nutrient use efficiency,
	water use efficiency, nitrogen, major crops,
	legumes, non-food crops
	- crop modelling, crop management,
	GxExM interactions, yield gap analysis, grain
	yield, biotechnology,
	- sunflower, soybean, fruits, vegetables
crop nutrit	ion (quantity-quality) and its link with genetics,
ARVALIS Institut du vegetal ARVALIS France phys	iology, nutrient cycling in the soil, climatic and
a	biotic stress (cereals, maize and potatoes)
improvir	ng yield and water/nutrient use efficiency of
сгор	s (including tobacco, wheat, rice and cowpea)
prim	narily by manipulating photosynthesis, both by
Lancaster University ULANC UK exp	ploiting natural variation and by creating new
varia	tion using gene editing, conventional GMO and
	synthetic biology
understar	nding determinants of plant yield (Arabidopsis,
whe	at, maize) focusing on the identification of the
Vlaams Instituut voor VIB Belgium ge	netic mechanisms underpinning plant organ
Biotechnologie	wth (e.g. cell division and cell expansion) and
	abiotic/biotic stress responses
photos	ynthetic physiology and plant environmental
Wageningen University and WUR phys	iology, with some crop and plant physiological
Research Netherlands ,	modelling expertise - both C3 and C4

5. Meetings and teleconferences

The following F2F meetings and teleconferences took place between D1.2 and D1.3 to discuss the project status and refine the work done in T1.2 (specific for T1.2, or related to T1.1/3/4/5):

- 20th of November 2019 F2F meeting What? Kick-Off meeting CropBooster-P project in Wageningen Who? Partners involved in CropBooster-P project Where? WU/WUR, Wageningen, The Netherlands
 28th of November 2018 – TELECONFERENCE What? Teleconference to set space and general framework of the CropBooster-P project Who? Task leaders of WP1 + several WPL
 13th of December 2018 – TELECONFERENCE
- What? Kick-off call with SR Teleconference to explain the concept of scenario building and define an outline of Task 1.1 Who? Task leaders of WP1 + Sommerrust (SR)
- 17th of January 2019 TELECONFERENCE What? Status quo call with Sommerrust (overview of trends and key uncertainties obtained through the brain downloading exercise) Who? Task leaders Tasks 1.1 and 1.2 + SR
- 22nd of January 2019 TELECONFERENCE What? Update teleconference with Task leaders of WP1 Who? Task leaders of WP1
- 24th of January 2019 F2F meeting What? Handover WPL1 from VIB (Marieke Louwers) to ULANC (Martin Parry) Who? Rene Klein Lankhorst, Marieke Louwers, Martin Parry, Jeremy Harbinson and Alexandra Baekelandt
- 31th of January 2019 TELECONFERENCE What? Status quo call with SR (concerns, comments, initial long list of trends, manage expectations for workshops)
 Who? WPL1 + SR + task leaders WP1
- 18th of February 2019 TELECONFERENCE
- What? Update call Task 1.4
 Who? Task leaders WP1 + People of INRA involved in Task 1.4
 27th of February 2019 TELECONFERENCE
- *What? Teleconference to provide task update + define the scope of data assimilation and collection format Who? Task leaders of WP1*
- 15th of March 2019 TELECONFERENCE What? Teleconference to discuss the format of data collection, level of detail, deliverables and assigned responsibilities according to expertise and areas of interest. Created shared folder for internal data collection. Data collection in progress. Who? WP1 Task 1.4 partners
- **3rd of April 2019 F2F meeting** What? F2F Meeting to finalize the common understanding of the output of WP1 Who? Leader WP1 and task leaders of WP1 Where? VIB, Ghent, Belgium
- 4th of April 2019 TELECONFERENCE What? Status quo call with SR (define/rephrase proxy variables, set expectations for 2-day workshop, which are key for the Scenario building exercise) Who? SR + Task leaders of WP111th of April 2019 - TELECONFERENCE

What? Update call Task 1.2 APRIL (overview yield determinants, Milestones & Deliverables, Update on Task 1.1 - Scenario building exercise) Who? WP1 Task 1.2 partners

Meeting minutes?

- YIELD POTENTIAL <-> actual yield (YIELD POTENTIAL+SUSTAINABILITY)
- Table of content for YIELD determinants needs to be re-circulated to optimize
- Keep close contact with Jerome Enjalbert (Task 1.4) Sustainability → Yield and Sustainability are highly interconnected → <u>Philippe Nacry</u> (new Task 1.4 leader)
- Crop-centered approach <-> Trait-centered approach -> USE TRAIT AS FOCUS
- Processes/Genetic pathways/Genes/Markers as starting point → Transferable/heritable traits → that could be exploited in breeding programs
- \circ Crop list \rightarrow proposed to work with SPECIMEN crops
 - orphan species are difficult to include because some favorites may appear, which may result in a dis-equilibrium
 - Major versus Minor crops
 - ~20 crop species are proposed to be feasible to work with
 - Proposition: CROP CATEGORIES → SPECIMEN/EXAMPLE crops

• 12th of April 2019 - TELECONFERENCE

What? Preparation for 2-day workshop event WP1 Task 1.1 Who? Task leaders WP1 + Sommerrust + some SHG participants

• 16-17th of April 2019 - F2F meeting - WORKSHOP

What? 2-day Scenario building workshop event; Day1 \rightarrow scenario building workshop, Day2 \rightarrow impact workshop

Who? Day1 \rightarrow core team (Project coordinator + WP leaders, Task leaders of WP1, Sommerrust), Day2 \rightarrow core team + SHG (determined by Task1.1) + EU policy members Where? plantETP, Brussels, Belgium

7th of May 2019 – F2F meeting

What? F2F Meeting to define the scope of WP1 (Determine Crop list, Determine which data the Database should capture)

Who? Project Coordinator + *WP leaders* + *Task leaders of WP1 Where? VIB, Ghent, Belgium*

• **10th of May 2019 – F2F meeting** What? Initiation to Database Sharepoint (Surveys) – Marc Cornelissen Who? Task leader T1.2 – Marc Cornelissen

• 13th of May 2019 - TELECONFERENCE

What? Update call Task 1.2 MAY (Update on Task 1.1 Scenario building exercise, Milestones & Deliverables, Crops: need to have vs. nice to have, proposition of Database outline that may be used for data collection) Who? WP1 Task 1.2 partners

Meeting minutes?

- There should be a tight/close interconnection between Yield (Task 1.2) and Sustainability task (Task 1.4). Also regular discussion to avoid redundancy/too much overlap.
- The Crop list was overall well approved by the partners involved in Task 1.2, there were few suggestions:
 - change the Crop category 'OTHERS' to 'FRUITS'
 - change the category 'ROOT STAPLES' to 'ROOT STAPLES/BELOW-GROUND PARTS'
 - ALGAE, for the moment only macroalgae/multicellular algae are represented → Example species/Specimen crops will have to be revised with the group of Jonas Collen (Roscoff).
- In this task, we are NOT collecting text and/or writing text, we are collecting literature/references. In a later stage, however, the collected references could be summarized in short paragraphs of text, but how this will be done is not clear for now.

- The Table of content for YIELD (Yield determinants) is a pillar for Task 1.2. Table of content will be used to collect the literature data in a TRAIT-CENTERED manner (<-> crop-centered). It is an absolute requisite to re-circulate the Table of content for YIELD (YIELD DETERMINANTS).
- The Database proposed for Data collection should also be usable from non-Microsoft based systems such as LINUX or APPLE. Also it should contain a structured language, allowing too much free text will unnecessarily complicate the Data collection procedure.
- The deadline for Data collection is mid/end of September.
- Quite a lot of stakeholders are interested to be involved in the process of Data collection (e.g. to identify or fill putative gaps with references/literature based on their expertise). Therefore, it would be good to involve the Stakeholders in this process at a later stage of Data collection allowing them to further complete the Data collection/Database.

• 14th of May 2019 - TELECONFERENCE

What? Database format discussion - Sharepoint (Survey) – Marc Cornelissen Who? Task leaders WP1

• 28th of June 2019 - TELECONFERENCE

What? Update call Task 1.2 JUNE (overview of the revised Yield determinants, Database headers, Sharepoint vs. Microsoft forms vs. Google forms)

Who? WP1 Task 1.2 partners

Meeting minutes?

- Ideally the Database should be designed in such a way that it allows to extract information on how relevant a certain trait is for a certain crop (e.g. by including more crop-specific questions).
- It could be extremely useful to automatically extract information based on the DOI (e.g. author, year, abstract, etc.). This would drastically reduce the time needed to enter a publication.

• **25th of June 2019 – F2F meeting** *What? ExCom meeting discussing the progress of the CropBooster-P project Who? Project coordinator + WP leaders + Task leaders of WP1 Where? ULANC, Lancaster, UK*

• **2nd of July 2019 – TELECONFERENCE** What? Linking Yield and Sustainability for the Database format Who? Task leader T1.2 and T1.4

The following F2F meetings and teleconferences are scheduled in the future:

- July 2019 (exact date to be determined) TELECONFERENCE What? Finalize template and data collection model Who? Task leaders WP1
- August 2019 (exact date to be determined) TELECONFERENCE What? Follow up call Task 1.2 JULY-AUGUST Who? WP1 Task 1.2 partners
- September 2019 (exact date to be determined) TELECONFERENCE What? Follow up call Task 1.2 September Who? WP1 Task 1.2 partners
- **11th of September F2F meeting** What? Update F2F meeting on progress within WP1 and discussion of the transfer to WP2 Who? Participant list is not yet finalized Where? VIB, Ghent, Belgium

6. WP1 Task 1.1 – Input for 2-day Scenario Building workshop (Brussels)

In preparation for the 2-day Scenario building workshop (Brussels), a list of trends/issues was collected within T1.1, involving all the partners. These lists were compiled, duplicates were removed and additional trends were added, rendering a final list of trends considered to be relevant for CropBooster-P since they can affect crop Yield (T1.2), Nutritional quality (T1.3) and/or Sustainability (T1.4).

These trends were then further processed into trend cards which capture the key aspects of each trend, including facts and figures, examples of key stakeholders and influencers, related sub-trends and the relevance for the CropBooster-P project. Subsequently, the trends cards were used during the 2-day Scenario building workshop event (T1.1) to generate the distinct scenarios.

List of trend considered for Scenario Building

Trends (in alphabetical order):

- 1) Aging Population
- Al & Big Data
- 3) Alternative Nutrition Sources
- Animal Welfare
- 5) Biofortification
- 6) Biotech
- 7) Blockchain
- 8) Cheaper Food
- 9) Circular Bioeconomy
- 10) Climate Change
- 11) Cultivar / Species Mixtures
- 12) Decline of Pollinators & Biodiversity
- 13) Declining Chemistry for Pest Control
- 14) Diet-related Chronic Diseases
- 15) Do-it-Yourself
- 16) E-Commerce

© SOMMERRUST GmbH 2019. All rights reserved.

- 17) Economic Pressure on Farms
- 18) Electrification
- 19) Environmental Concerns
- 20) Fair Trade
- 21) Globalization
- 22) Healthy Lifestyle
- 23) ICT on the Rise
- 24) Increased Mechanisation
- 25) Intellectual Property
- 26) Land-Use Pressure
- 27) NBTs & Genetic Modification
- 28) Offering of Meat Alternatives
- 29) Organic Farming
- 29) Organic Farming
- 30) Plant Beneficial Microbes
- 31) Population Growth

- 32) Power of the Online Public
- 33) Product & Research Regulation
- 34) Public Engagement in Research
- 35) Reduction of / Altered Genetic Resources Circulation
- 36) Renewable Energy
- 37) Resource Scarcity
- 38) Rising Disposable Income
- 39) Risk Sensitivity
- 40) Robotics
- 41) Self-Tracking / Quantified Self
- 42) Sustainability
- 43) Transparency
- 44) Urban Farming / Greenhouses
- 45) Urbanization

Example of a trend card

Trend Card

Plant Beneficial Microbes

Description

As the discovery of new synthetic pesticides has become increasingly costly, the biopesticide market has been growing, including the exploration and use of plant beneficial microbes. These can act preventatively, suppress diseases, enhance the availability of nutrients and promote plant growth and rooting.¹

Facts & Figures

- Increasing investment of agri start-ups in microbiome²
- Ca. €400M spent on "microbiome related research" in the first 2 years of H2020 (EU), investment up to €130M foreseen until 2020³
- The global human microbiome market would be worth USD 0.3 billion by 2019, and reach USD 0.7 billion by 2023⁴
- Rising number of scientific papers on microbiome research (2769 [2012] to 8431 [2016]⁵

Stakeholders & Influencers

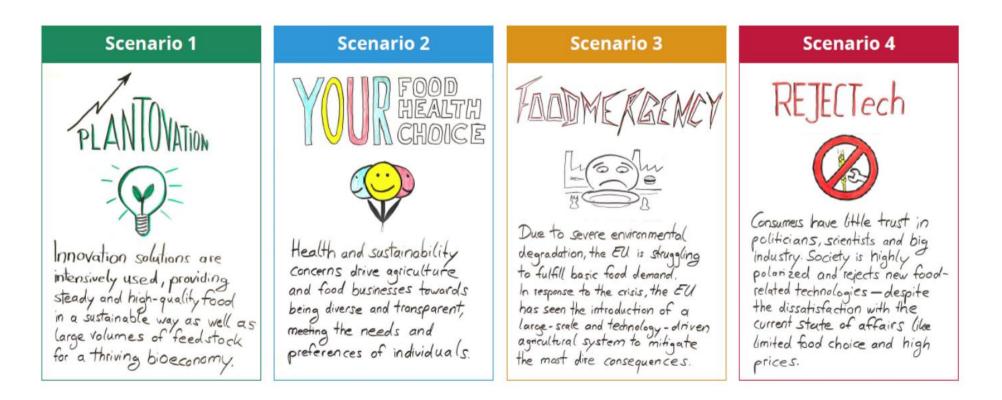
- Researchers/startups (seek funding, innovate)
- Consumers (demand)
- Farmers (supply)
- Supermarkets/retail (promotion)
- Government (regulation)
- NGOs (certification)

Related (Sub-)Trends

Pesticide free agriculture, Sustainability, Bio Boom

Relevancy: CropBooster-P

- Influence on land use, crop sustainability and productivity
- Reduced acceptance of conventional CPM
- Influence on food prices
- Enable new business models
- Certification and regulation (synthetic pesticides/fertilizers vs. biologicals)


vich, A. (2018), "Ultizing beneficial microbes in a systems approach to plant disease management". "Waitz E. (2017), "A new crop of microbe startups raises big bucks, takes on the establishment", Nat Biotechl. 8:35(12): 112(E. R&MAPPING, J.G. RTD presentation. "OECD (2017), "The Microbiome, det and health: Towards a science and mnovation agenda", OECD Science, Technology and Industry Policy Papers,

7. Outcome WP1 Task 1.1 – 2-day Scenario Building workshop (Brussels)

Based on the trend card information and proxy variables raising questions regarding crop production in the future, four distinct scenarios were developed:

The four scenarios cover a wide range of outcomes which may affect distinct aspects of Yield, Nutritional quality and Sustainability. Some of the putative impacts of the distinct scenarios on Yield, Nutritional quality and Sustainability are listed below:

Scenario 1 - Plantovation

- Fibres, high value crops
- High value compounds/phytochemicals
- Super-crops pushing the limits of yield/area

Scenario 2 - Your food, your health, your choice

- High value compounds, superfoods
- Alternative plant protein sources
- GM alternatives

Scenario 3 - Foodmergency

- Calories are the most important Focus on sugars and fats
- Short growing time
- Robust crops
- Concerns on soil quality/nutrient availability

Scenario 4 - Rejectech

- Alternative crops/ancestral cultivation
- Alternative nutrition sources may be required to meet the lack of biomass/yield

8. Assessment and digestion of the outcome and recommendations of the workshop for T1.2

a. Framework for data collection proposed to the participants of the workshop

Traits, processes and pathways WITHIN the scope of CropBooster-P WP1:

- Current trends/state of crops within Europe
- Traits to improve or maintain yield, nutritional quality either under favourable or unfavourable environments
- Traits to improve and optimize crop yield
- Crop nutrient availability
- Breeding technologies relevant for nutrient use efficiency, uptake and metabolism
- Transferable technologies
- Synthetic biology
- Aquatic crops
- Niche/underdeveloped/potentially beneficial crops
- Food and fodder crops
- Specialized metabolites with nutritive scope
- Toxic compounds/anti-nutrients and their accumulation in unfavourable growth conditions

- Pathways, genes, QTLs, etc. involved in determining yield and their orthologues
- Trade-offs between nutrition and yield and sustainability (contributing to WP1.5)
- Spatial distribution of nutrients and partitioning

Traits, processes and pathways **OUTSIDE** the scope of CropBooster-P WP1:

- Nutrient trends outside Europe/non-European crops
- Non-heritable traits/traits without genetic basis
- Social/ethical/environmental/physical factors (e.g. GMO debate, global warming, etc.)
- Projections predicting trends for the future
- Crop management-related traits
- Biotic stress (e.g. pathogens, pests, microorganisms, etc.)
- Organoleptic traits (e.g. taste, smell, mouth feeling, etc.)

b. Feedback from the participants at the scenario building workshop, F2F and teleconferences meetings

- ✓ **'Toolbox' format** (cfr. How should the 'toolbox' that is generated in WP1 look like?)
 - Favouring a searchable database as output, which is easy accessible and can continuously be updated as new information/technologies arise.
 - Compiling the 'Toolbox' into an encyclopedia format was suggested to be unnecessary as this would easily be out of date.
 - → Outcome: 'Toolbox' will not have an encyclopedia- like format, but is likely to comprise short reports capturing the literature and outlining putative trade-offs with other tasks, as well as a searchable spreadsheet that contains the main information for each gene/trait analysed. The spreadsheet will be generated from smaller Surveys. Each Survey will add a line of text/data in the final spreadsheet.

✓ **Crops** (cfr. Which CROPS should be included in the work that is done in WP1?)

- The suggested list of priority crops which will be considered in the database should also include vegetable, fruit, fibre producing species and algae examples.
- Niche crops could be considered in a separate category distinct from priority crops, to ensure important information is preserved
- → Outcome: The Survey used for Data collection will include the option to add additional/not predefined e.g. crops, traits, pathways, etc. to not limit the input (free text).

Based on the comments during the 2-day workshop and on the F2F meeting organized in Ghent (7th of May) the list of crops was established (crops in <u>green, bold and underlined</u> will be investigated in priority):

Algae

- Saccharina spp (kelps)
- Laminaria (kelps)
- Porphyra
- Ulva

Forage grasses / fodder

- Lolium (rye grass)
- Alfalfa
- Clover
- Sugarcane
- Miscanthus

Grain staples

- Wheat
- Barlev
- Rice
- Maize
- Sorghum
- Secale (rye) Oats
- Durum wheat Millet

N2-fixers

- Field bean
- Soybean
- Lupin
- Pea clover

Oilseed

- Sunflower
- Soybean
- Rapeseed
- Olive
- maize

Vegetables

- Tomato
- Leafy vegetables (spinach)
- Lettuce
- Brassica's (broccoli, cabbages)
- Pea
- Carrots Parsnip
- Grapes

Fibre & lignocellulose

- Hemp
- Poplar Willow
- Miscanthus Switchgrass
- Douglas Sitka
- Eucalyptus Spruce

Root staples/below-ground part

- Potato
- Sugar beat Onion

Model plants

- Arabidopsis
- Tobacco (important with regard to plastid transformation photosynthesis)
- Rice
- Spinach (relatively older publications)
- Maize

Fruits

- Grape
- Pome (apple, pear)
- Citrusses Olive trees
- Strawberries
- Raspberries
- ✓ **Traits** (cfr. Which TRAITS should be included in the work that is done in WP1?)
 - The major traits pertaining to Sustainability, and considered within the CropBooster-P • template for data collection belongs to Photosynthesis: photochemistry and biochemistry, Sink/source activity, Resource management and Plant growth, architecture and phenology. Their relevance will be considered for major crops, niche crops/underutilized crops, and aquatic crops.
 - Some literature may correspond to distinct traits, it should be feasible to add this when completing the Survey.
 - Though most Yield determining traits are presented in the list shown, some may still be • missing.
 - There should be a close connection between Task 1.2 (Yield) and Task 1.4 (Sustainability), • since for most traits Yield and Sustainability are interlinked.
 - → Outcome: Space will be available in the Surveys used for Data collection to add specific traits, stresses and crops as some may not be included in the Survey. Pest, microorganism and

pathogen interaction-related traits (biotic stress) are out of the main scope of the CropBooster-P project. However, within the Survey it will be possible to mark traits of outstanding interest for which there is a plant genetic basis (free text).

- ✓ **Technologies** (cfr. Which TECHNOLOGIES should be included in the work that is done in WP1?)
 - All known technologies will be considered.
 - → Outcome: Most technologies are presented/included in the Survey that will be used for Data collection. Nonetheless, space will be made available in the Surveys to add additional technologies (free text).

c. Revised template for data collection

Based on the input of the Stakeholders, results from the WP Task 1.1 Scenario building exercise and several extensive discussions (F2F meetings and teleconferences), a revised framework for Data collection was generated. In Tasks 1.2/3/4 data will be collected in the form of a common Survey, with (1) a section that is common for Tasks 1.2/3/4 and (2) a section that is specific for Tasks 1.2 (Yield) and 1.4 (Sustainability), detailed in the following paragraphs.

Column	Column information	Column 'choices'
Scale (by climate)	Information	Mediterranean, humid subtropical, marine,
Scale (by climate)		humid continental, subarctic, tundra and highland, other
If other, specify		
Relevance to	Eg. Increased	Free text
cropbooster	canopy cover,	
	increases	
	biomass	
Species group type	Eg. Algae,	Algae
	forage grasses	Forage grasses
		Grain staples
		N2 fixers
		Oilseed
		Vegetables
		Fibres and lignocellulose
		Root staples
		Model Plants
		Other
If other, specify		
Species	(split per	Fucus, Laminaria, Porphyra, Ulva
	species group	Ryegrass, Alfafa, Clover, Sugarcane, Miscanthus
	type? – see	Wheat, Barley, Rice, Maize, Sorghum, Rye, Oats, Durum wheat, Millet, Field bean,
	earlier)	<u>Soybean,</u> Lupin, <u>Pea,</u> Clover
		<u>Sunflower</u> , Soybean, <u>Rapeseed</u> , olive, maize
		Tomato, leafy vegetables (spinach), Lettuce, Brassicas, Pea, Carrots, Parsnip,
		Grapes, Hemp, Poplar, Willow, Miscanthus, Switchgrass, Douglas Sitka,
		Eucalyptus, Spruce, Potato, Sugarbeet , Onion Arabidopsis, Tobacco, Rice,
		Spinach, Maize Grape, Pome, Citrus, Olive, Strawberry, Raspberry, other
If other, specify		

(1) Section common for Tasks 1.2/3/4

F		
Method summary*	Technologies	Conventional Breeding
	employed to	Populations/Mapping, Magic, Diversity Sets
	achieve y/n/s	MAS
	effect	GWAS
		Mutant Populations
		Tagged populations
		Mutagenesis
		Epimutation
		TILLING
		Transposon
		Mobilisation
		Metabolic design
		Conventional GMO
		Gene Editing
		Plastid transformation
		Synthetic Biology
		Modelling
		Phenotyping
		Speed Breeding
		other
If other, specify		
Yield benefit**		Yes/ no
Yield benefit- how**		Free text
Nutrition benefit**		Yes/no
Nutrition benefit-		Free text
how**		
Sustainability benefit**		Yes/no
Sustainability benefit -		Free text
how**		
Biological process	Eg. respiration	TBD (L1-5, specific for the Task 1.3 and Task 1.2/4)
Genetic pathway (if		Free text
applicable)		
Genes involved		Free text
Orthologues?		Yes/no
Orthologues in which		Free text
crops		
Bibliographic		Free text
reference(s)		
title		Free text
abstract		Free text
uniprot		Free text
PMID		Free text
Transferability potential		Yes/ no
Comments on		Free text
transferability		Free text
What technology would	CRISPR, GMO	Free text
make this example		
transferable?		
General comments	wild into the technical :	

*This could help build into the technical annexe

**This could allow to determine correlations and trade-offs for WP Task 1.5

The columns for data collection will be used as the basis for a clickable Survey. Based on the features selected in this section, participant will be redirected to the specific Task of which the entry is related to. The data entered will serve as a platform to integrate the final data, as well as identify and link commonalities among Tasks.

(2) Section specific for Tasks 1.2 (Yield) and 1.4 (Sustainability)

Based on the extensive discussions between Tasks 1.2 (Yield) and Task 1.4 (Sustainability), a template was generated that fits both tasks by structuring the content in five Levels (L1-L5). First of all, partners involved in Task 1.2 and Task 1.4 will be asked to complete the sections from a Yield or Sustainability perspective (L1). Subsequently, the Survey template addresses the following Major Traits (L2):

- Photosynthesis: photochemistry and biochemistry
- Sink/source activity
- Resource management
- Plant growth, architecture and phenology

These Major traits (L2) were subsequently further refined in Traits and Sub-Traits (L3-L4). L5 allows to add factors that influence the corresponding Traits. The aim of this data collection strategy is to precisely identify genes and traits that can be improved or targeted to increase Yield or change Sustainability. The data generated by the Surveys will then serve as the basis for the report in Task 1.5.

The detailed list of Levels (L1-5) that will be used for Data collection in Tasks 1.2 (Yield) and Task 1.4 (Sustainability):

L1	L2	L3	L4	L5 (factors affecting yield)
Yield	Photosynthesis -	Photochemistry	Light harvesting	Stress - Nutrient deficiency
	photochemistry		Light capture optimisation	Stress - Nutrient
	and biochemistry		Pigment composition	overload/form/quality
			Light use efficiency (electron transport)	Stress - Drought
			Other	Stress - Flood
		Biochemistry – Carbon assimilation	Stomatal aperture	Stress - Heavy metals
			Rubisco and other Calvin cycle enzymes	Stress - Salinity
			Photosynthetic limitations (cofactor, TPU)	Stress - Heat
			Chloroplast-cytosol transporters	Stress - Cold/Frost
			Sucrose - starch balance	Stress - pH
			Photorespiration	Stress - ozone, UV, oxidative
			Dark (mitochondrial) respiration	Stress - Light
			Photosynthetic pathway (C4, C3, CAM,	Stress - Photoperiod
			C3-C4 intermediary)	Stress - Physical constraints
			Sugar pathways	(soil compaction, hail, wind,
			Photoacclimation	sun)
			Photosynthetic induction	Stress - High humidity
			Other	Stress - Soil composition
				Stress - Bio stimulants
		Biochemistry - Photoprotection	NPQ	Stress - Microbes in the
		biochemistry inotoprotection	Mehler reaction	rhizosphere
			Repair pathways (Oxidative stress)	Stress - Toxicity
			Photosynthetic by-products	
			Protective molecules	
			Sugars and osmolytes	
			Photosynthetic antioxidants	
			Other	
			Other	

I be then have a second second 2011	Materia and Neutrile at	Materia and Nuture to unterlar (here)	
management of	uptake/assimilation vs use	channel regulators)	
resources			
	Primary and secondary metabolism	Osmolytes, Proteins and Metabolic	
		compounds accumulation	
	Nutrient use efficiency (NutUE)	Local Water and Nutrients transport (root,	
		stem and leaf tissues)	
		Long distance Water and Nutrients	
		transport (xylem)	
		Nutrient metabolism	
		Nutrient partitioning	
		Nutrient storage	
		Nutrients recycling	
		Alternative metabolic pathways	
		Ion homeostasis	
		Other	
	Heavy metals and salt	Uptake (transporter channel regulators)	
		Local and long distance transport	
		metabolism	
		partitioning	
		storage	
		Alternative metabolic pathways	
		Ion homeostasis	
	Other		
	Uptake and spatial management of resources	management of resources Primary and secondary metabolism Nutrient use efficiency (NutUE) Heavy metals and salt	management of resources uptake/assimilation vs use channel regulators) Primary and secondary metabolism Osmolytes, Proteins and Metabolic compounds accumulation Nutrient use efficiency (NutUE) Local Water and Nutrients transport (root, stem and leaf tissues) Long distance Water and Nutrients transport (xylem) Nutrient metabolism Nutrient metabolism Nutrient storage Nutrients storage Nutrients and salt Uptake (transporter channel regulators) Local long distance transport Local metabolism Nutrient storage Nutrients recycling Alternative metabolic pathways Ion homeostasis Other Uptake (transporter channel regulators) Local long distance transport metabolism partitioning storage Alternative metabolic pathways Ion homeostasis

Yield	Sink/source	Nutrient metabolism, transport,	Sucrose metabolism (source)	
riciu	-			
	activity	remobilization and partitioning	Nutrient metabolism (source)	
			Water and nutrients storage	
			Storage compound metabolism (source)	
			Carbon transfer	
			Nutrient transfer	
			Coordination of C and Nutrient	
			assimilation	
			Other micronutrients	
			Other	
		Source sink balance	Sink to source feedback	
			Source to sink feedforward	
			Senescence of source organs	
			Sink/grain development	
			Seed filling	
			Senescence of sink organs	
			Other	
		Other		

Yield	Plant growth,	Shoot architecture anatomy and	Phyllotaxy	
	architecture and	canopy profile	Self-shading	
	phenology		Compactness	
			Stem anatomy and composition	
			Shoot and canopy hydraulics	
			Vascular tissues anatomy (density,	
			structure) and functioning	
			Organisation of photosynthetic resources	
			Leaf angle (erectness)	
			Leaf morphology/shape	
			Organ length/width/strength	
			Wound healing	
			Other	
		Leaf anatomy and activity	Cuticular thickness	
			Wax/cutin ratio and content	
			Stomatal properties (morphology,	
			densities, distribution, location, aperture	
			and functioning)	
			Mesophyll thickness	
			Mesophyll conductance	
			Mesophyll resistance	
			Mesophyll structure	
			CAM/C3/C4 intermediary structure	
			Vascular tissues anatomy (density,	
			structure) and functioning	
			Leaf hydraulics	
			Stomatal aperture and functioning	
			regulation	
			Organelle properties (density, positioning	
			and movement)	
			Cellular, subcellular and ultrastructural	
			adaptations	
			Wound healing	
			Other	

Growth rate	Meristem activity
Giowuiriate	Cell division
	Growth mechanics
	Cell expansion
	Cell wall composition
	Cell turgor
	Other
Root architecture, anatomy	-
activity	Root number (lateral, seminal,
	adventitious)
	Root growth angle
	Root density
	Root plasticity
	Root competition ability
	Root hydraulics
	Cell layer number
	Cells layer structure
	Aerenchyma (PCD)
	Cell division/elongation
	Cell wall composition
	Lignification, Suberisation
	Cellular, subcellular and ultrastructural
	adaptations
	Wound healing
	Storage capacity
	Respiration
	Exudation
	Other
 Root/shoot coordination	Root/shoot ratio
	Root/shoot transport and signalling
	Other

Phenology	Reproductive switch
	Flower development/abortion
	Flowering time
	Flower number
	Fertilization and seed set efficiency
	Seed number/abortion
	Seed filling rate
	Inflorescence plasticity
	Early vigour
	Ageing/senescence/juvenility
	Plastid/chloroplast lifetime
	Stay-green
	Other

d. Data collection - Survey construction

Based on the (1) section that is common for Tasks 1.2/3/4 and the (2) section that is specific for Tasks 1.2 (Yield) and 1.4 (Sustainability), a data collection Survey is currently being designed. Also the input of all partners involved in WP1 was included as much as possible when generating this Survey. A final version of the Survey ready for Data collection within Tasks 1.2, 1.3 and 1.4 is expected to be launched between mid/end of July, 2019.

Description of entry-	- general parameters	
Title		
Your answer		
Abstract		
Your answer		
Bibliographic referer	nce	
Your answer		
PMID/ other identifie	ers	
Your answer		

Extract from the current version of the data collection survey.

9. ExCom meeting

The following points were extensively discussed during the ExCom meeting and/or all other F2F meetings and teleconferences:

- 1. Bibliographic review should be performed at the TRAIT scale, and when possible, at pathway and gene levels. Some of the key traits will not have clear genes/pathways. Nonetheless, the focus should be on transferable/heritable traits.
- 2. Traits involved in plant-to-plant interactions: light/nutrient/molecular cues and related pathways used by the plants to detect neighbour plants and adapt their growth/metabolism are currently under-represented in the list of traits considered in T1.2, T1.3 and T1.4.
- 3. Traits involved in plant/soil micro-organisms interactions, e.g. root exudates are currently under-represented in the list of traits considered in T1.2, T1.3 and T1.4.
- 4. It was recommended to include the four scenario generated during the 2-day scenario building workshop event in the Survey and thus in the Database.

- 5. Traits involved in plant-pathogen interactions, including physical/chemical processes linked to plant/tissue chemical and structural composition, from metabolism to architecture are currently under-represented in the list of traits considered in T1.2, T1.3 and T1.4.
- ➔ Points 1, 2, 3 and 4 were integrated in the template for Data collection, whereas 5 was considered out of the scope of CropBooster-P.
- 6. The database should contain only a relatively small number of key papers by experts in the field to set the stage for the different traits. In addition, a number of recent publications will be added per trait and sub-trait to capture the current state-of-the-art. Also the stakeholders will get the opportunity to propose entries for the database. The overall feeling is that the database will contain no more than approx. 500 entries.
- It would be good to develop an 'Ecosystem Services'-based vision in CropBooster-P. The T1.4 group has proposed a reduced and manageable list of services, derived from Costanza et al. 1997, see hereafter) and its interest for WP1. At a later stage, the Ecosystem services could also be used to link WP1 to WP2 & WP3.

Costanza et al. « The Value of the World's Ecosystem Services and Natural Capital », Nature, 1997

#	ECOSYSTEM SERVICE*	ECOSYSTEM FUNCTIONS	EXAMPLES
1	Gas regulation	Regulation of atmospheric chemical composition.	CO_2/O_2 balance, O_3 for UVB protection, and SO_x levels.
2	Climate regulation	Regulation of global temperature, precipitation, and other biologically mediated climatic processes at global or local levels.	Green-house gas regulation, DMS production affecting cloud formation.
3	Disturbance regulation	Capacitance, damping, and integrity of ecosystem response to environmental fluctuations.	Storm protection, flood control, drought recovery, and other aspects of habitat response to environmental variability mainly controlled by vegetation structure.
4	Water regulation	Regulation of hydrological flows.	Provisioning of water for agricultural (e.g., irrigation) or industrial (e.g., milling) processes or transportation.
5	Water supply	Storage and retention of water.	Provisioning of water by watersheds, reservoirs, and aquifers.
6	Erosion control and sediment retention	Retention of soil within an ecosystem.	Prevention of loss of soil by wind, runoff, or other removal processes, storage of silt in lakes and wetlands.
7	Soil formation	Soil formation processes.	Weathering of rock and the accumulation of organic material.
8	Nutrient cycling	Storage, internal cycling, processing, and acquisition of nutrients.	Nitrogen fixation, N, P, and other elemental or nutrient cycles.
9	Waste treatment	Recovery of mobile nutrients and removal or breakdown of excess or xenic nutrients and compounds.	Waste treatment, pollution control, detoxification.
10	Pollination	Movement of floral gametes.	Provisioning of pollinators for the reproduction of plant populations.
11	Biological control	Trophic-dynamic regulations of populations.	Keystone predator control of prey species, reduction of herbivory by top predators.
12	Refugia	Habitat for resident and transient populations.	Nurseries, habitat for migratory species, regional habitats for locally harvested species, or over wintering grounds.
13	Food production	That portion of gross primary production extractable as food.	Production of fish, game, crops, nuts, fruits by hunting, gathering, subsistence farming, or fishing.
14	Raw materials	That portion of gross primary production extractable as raw materials.	The production of lumber, fuel, or fodder.
15	Genetic resources	Sources of unique biological materials and products.	Medicine, products for materials science, genes for resistance to plant pathogens and crop pests, ornamental species (pets and horticultural varieties of plants).
16	Recreation	Providing opportunities for recreational activities.	Eco-tourism, sport fishing, and other outdoor recreational activities.
17	Cultural	Providing opportunities for non- commercial uses.	Aesthetic, artistic, educational, spiritual, and/or scientific values of ecosystems.

*We include ecosystem "goods" along with ecosystem services.

10. Future deliverables

Number Deliverable Title Lead Dissemination Туре Delivery beneficiary level month Deliver Matrix and Report discussing VIB Public D1.8 Report M12 strategy forward for future plant research in Europe that can be used as input for subsequent WPs -Report of recommendations, gaps, enablers in the identified toolbox

The following deliverables are scheduled for WP1 Task 1.2 and 1.5: