

CropBooster-P

Deliverable 1.5

Title: Digested outcome and recommendations of the workshop regarding nutritional improvement

Start date of the project: November 1st, 2018 / Duration: 36 months

Planned delivery date: M8 (June 2019) Actual submission date: 30 June 2019 Work package: WP1 / Task: 1.3

Work package leader: ULANC Deliverable leader: UCPH

Version: Draft 1

Date of version: March 2019

Dissemination level	Public

Table of contents

1.	Introduction	3
2.	Objectives	3
3.	Partners and fields of expertise	3
4.	Meetings and teleconferences	5
5a.	. WP1 Task 1.1 Trend cards:	5
5b.	. WP1 Task 1.3 outcome:	7
F	Revised Phases:	7
F	Feedback from the partners at the scenario building workshop:	7
F	Revised template for data collection:	9
(Construction of a survey	10
6.	Deliverables	11
7.	Annexes	12
A	Annexe 1	12
A	Annexe 2	14

1. Introduction

Nutritional quality remains a major focus area in plant breeding for the continued improvement of agronomic traits and future crop optimization. With the growing demands for increased productivity and limitations in arable land and nutrient availability, the need for nutrient provision and uptake optimization in a sustainable manner gains significance. Obtaining an overview on the current state of nutritional quality crops produced within Europe including methods, technologies and pathways would therefore provide an insight into various aspects of plant improvement and nutrition security, contributing to a toolbox that would prove invaluable to the future directions of crop research.

The WP1-Research toolbox Task 1.3 will comprise of an overview of the current and future focus areas and approaches to improve crop nutritional quality. This will include a survey of published scientific literature for all major aspects of crop nutrition- spanning nutritional quality (ie, macronutrients, micronutrients, specialized metabolites and anti-nutrients) in major, minor, niche and aquatic crop species. Methods to improve nutritional quality, current and future technologies to improve crop nutrition and existing geographical trends with respect to nutrition will be included in this study.

Additionally, within the scope of Task 1.3 is to contribute to crop nutritional quality specific trends in the current agricultural and crop production scenario in conjunction with Task 1.1. This will serve as preparatory material for the stakeholder group meeting. Based on the outcome from this meeting, the four scenarios generated will create potential outcomes that serve as reference points in the construction of the data collection surveys and final report within task 1.3/1.5.

2. Objectives

WP1-Research toolbox Task 1.3 aims to map existing and putative future areas, strategies and technologies (including modelling approaches) with the potential to improve nutritional quality in different crop species relevant to selected Geographical regions of Europe (NW,SE, Central-East). The current, updated methods and techniques used to evaluate the nutritional quality of different crops (eg. HPLC, NMR NIR/FTIR) will be logged and the different identified options to improve nutritional quality taking major and underused/underdeveloped terrestrial and aquatic crops and technologies with economic potential and value for Europe will be listed. Trade-offs between nutritional quality and yield will be included.

3. Partners and fields of expertise

Organisation name	Short name	Country	Area(s) of specialization
Københavns Universitet	UCPH	Denmark	 photosynthesis; regulation of photosynthesis, chloroplast biology, thylakoid membrane plant development, microProteins, tissue culture
Consiglio Nazionale delle Ricerche	CNR	Italy	 Secondary metabolism, evaluation of phenols, antioxidant activities of plant extracts, identification/separation of bioactive compounds by HPTLC, HPLC, NMR antioxidants and bioactive components in food products, nutraceutical studies using cellular and animal models

Organisation name	Short name	Country	Area(s) of specialization
			 Reduction of antinutritional factors and modulation of bioactive molecules in seeds by genetic, genomic and biotechnological approaches, mineral biofortification of seed crops New breeding technologies for biofortification of tomato and other horticultural crops, nutritional assessments on biofortified crops or underutilised varieties
Europese Organisatie voor Wetenschappelijk Plantenonderzoek	EPSO	Belgium	
Heinrich-Heine- Universitaet Duesseldorf	UDUS	Germany	
Julius Kuehn-Institut Bundesforschungsinstitut fuer Kulturpflanzen	JKI	Germany	New molecular technologies in agriculture – incl. improvement of food/feed quality genome editing in different plants
Centre National de la Recherche Scientifique	CNRS	France	 essential metal (Fe, Mn) transport and seed storage, toxic metal uptake in plants biochemistry, metabolic engineering and functional analysis of plant metabolism
University of Nottingham	UNOTT	UK	 plant and crop physiology, wheat, rice, photosynthesis crop physiology, agronomy, drought, nutrient use efficiency, nitrogen, wheat
Institut National de la Recherche Agronomique	INRA	France	quantitative genetics, genetic control of tomato fruit quality (sensory and nutrional), fruit and vegetable quality in general
University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca	USAMV CLUJ	Romania	 Biochemistry of plant phytochemicals, Advanced techniques for phytonutrients' encapsulation, Analysis (Identification/separation) of bioactive compounds from plants and food by LC-MS, FTIR Food biotechnology, Microencapsulation of probiotics, Molecular gastronomy, Biofortified crops
ARVALIS Institut du vegetal	ARVALIS	France	crop nutrition (cereals, maize and potato) linked to crop production (quantity-quality), nutrient cycling in the soil and genetics

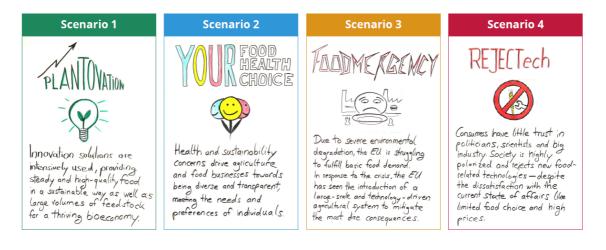
4. Meetings and teleconferences

The following meetings and teleconferences have been held to discuss the project status (specific or related to the development of task 1.3):


- 27 Feb 2019 Teleconference- Work package leaders

 Defined the scope of data assimilation and collection format.
- 7 March 2019 Teleconference- WP1 Task 1.3 partners
 Discussed format of data collection, level of detail, deliverables and assigned responsibilities according to expertise and areas of interest. Created shared folder for internal data collection. Data collection in progress.
- 3 April 2019 F2F Meeting WP leaders- Finalize template and data collection model
- 4 April- Status update call WP 1.1
- 12 April 2019- teleconference- workshop preparation WP1.1
- 16-17 April 2019- Scenario planning and building workshop WP1.1
- 26 April- UCPH internal feedback meeting WP1.3
- 14 May- Teleconference with WP1 leaders, Database format discussion
- 20 May- Teleconference with WP1.3 members- update call
- 13 June- UCPH internal meeting to discuss survey format WP1.3
- 25 June- CropBooster-P Excom meeting

5a. WP1 Task 1.1 Trend cards:


In preparation for the scenario building workshop, a list of relevant trends and issues focusing on subtask nutrition was collected from among the partners and assimilated into a long list of trends. These were further sorted according to relevance to the CropBooster-P project. A final shortlist of trends was proposed which contained trends pertaining to crop yield, nutrition and sustainability subtasks. These trends were then further processed into trend cards.

Trend cards capture the key aspects pertaining to each trend for consideration by the stakeholder group. These include facts and figures relating to the trend, examples of key stakeholders and influencers, the related sub trends and the relevance for the CropBooster-P project.

Fig.1 Final list of list of trends to be considered at the scenario building workshop in alphabetical order (above) and Example of a trend card for the scenario building workshop (below). Trends span aspects relating to crop yield, nutrition, and sustainability.

Based on the trend card information and proxy variables raising questions regarding crop production in the future, themes were identified based on which the following scenarios were developed:

Fig.2 Overview of the four scenarios covering a wide range of outcomes. These scenarios will serve as a template for specific questions in the development of surveys within tasks 1.2-1.4.

Based on the scenarios developed, specific aspects within the surveys will be included in order to generate outcomes specific to Nutritional quality within each of these learning scenarios. Some of the emphasised aspects of the survey are:

Scenario 1- Plantovation

Fibres, high value crops
High value compounds/phytochemicals
Supercrops pushing limits of yield/area

Scenario 2- Your food, your health, your choice

High value compounds, superfoods Alternative plant protein sources GM alternatives

Scenario 3- Foodmergency

Calories are most important- Focus sugars and fats Short growing time, robust crops Soil quality/ nutrient availability concerns

Scenario 4- Rejectech

Alternative crops/ ancestral cultivation/landraces
Alternative nutrition sources to meet lack of biomass/yield

5b. WP1 Task 1.3 outcome:

Revised Phases:

WP1 Task 1.3 has been divided into 3 smaller phases to facilitate data collection:

- Definition of template, division of tasks among partners according to expertise and areas of interest (by M5 end)
- 2) Data collection/ filling templates (by M11 middle)
- 3) Compilation and filling in the gaps in the collected data, arranging the collected information in a comprehensive format and upload to a central location (as part of T1.5 by M12 end)

Feedback from the partners at the scenario building workshop:

A framework within which data collection of task 1.3 was proposed to the participants of the workshop for feedback:

Within the scope of task: (what data collected will account for)

Documentation of traits, processes and pathways pertinent to crop nutrition. This includes:

- Current trends/ state of crop nutrition within Europe
- Methods to improve and optimize nutritional yield/ content in crops
- Nutrient availability (to the crops)
- Breeding technologies relevant to nutrient use efficiency, uptake and metabolism
- Transferable technologies (value capture)
- Synthetic biology to enhance nutrition
- Documentation of current state of nutrient categories per crop type: Carbohydrate, protein, fats, vitamins and minerals
- Aquatic crops

- Niche/ underdeveloped/ potentially beneficial crops
- Food and fodder crops
- Specialized metabolites with nutritive scope
- · Toxic compounds/ anti-nutrients
- Document pathways, genes involved and orthologues
- Tradeoffs between nutrition and yield and nutrition and sustainability (to contribute to WP1.5 eventually)
- Spatial distribution of nutrients/ partitioning
- Nutrient uptake/ availability changes based on Geographical location within Europe

Outside the scope of this task: (what data collected will not account for)

- Nutrient trends outside Europe/ non-European crops
- Non-measurable traits/ traits without genetic basis
- Social/ethical/environmental/physical factors (eg. GMO debate, global warming, weather inclemency and pests)
- Projections- predicting nutrient trends for future. (Capture current state of the art)
- Organoleptic quality (taste, smell...)

Based on this input, the partners suggested the following improvements to the data collection strategy:

Toolbox format

- Favor a searchable database as an output, which can be updated as new information/ technologies arise
- Compiling the toolbox into an encyclopedia format was suggested to be unnecessary (as this could go
 out of date)

Outcome: Toolbox will comprise shorter report outlining tradeoffs, as well as a searchable spreadsheet containing the main information for each gene/trait analyzed. The spreadsheet will be generated from smaller surveys, each survey contributing to a line of text/ data in the final spreadsheet.

Priority crops

- The suggested list of priority crops which will be considered in the database should include vegetable and fruit examples
- Niche crops could be considered in a separate category distinct from priority crops, to ensure important information is preserved

Outcome: Data collection survey will include option to add examples (free text) for crops that are not predefined, to allow for additional input.

Traits

- Consider bio-digestability and availability of protein as a trait
- Consider specialized traits for specific nutritional requirements, for example, gluten-free wheat
- Dealing with nutritional tradeoffs (for example, starch/protein partitioning within a crop)

Outcome: Space will be made available in the data collection surveys to add specific traits, as all cannot be foreseen/ impact assessed. Specialized traits such as engineering crops to specific dietary requirements and nutritional tradeoffs are out of the main scope of the current exercise. However, provision will be made within the database to mark traits of specific interest for which there is a genetic basis.

Technologies

- Post-harvest technologies to ensure optimal nutrient quality during crop storage
- Stress induced transposable element mobilization

Outcome: Post-harvest technologies are out of the defined scope of CropBooster-P and hence will not be included. Space will be made available in the surveys to add technologies.

Revised template for data collection:

Based on the input from the Stakeholders, and results from the WP 1.1 scenario building exercise, a revised plan for data collection was formulated. WP1.2- 1.4 will collect Data in the form of a common survey, with two sections:

Section 1, common to WP 1.2-1.4

<u>+</u>	
Column	Column 'choices'
Scale (by climate)	Mediterranean, humid subtropical, marine, humid continental, subarctic, tundra and highland, other
If other, specify	
Relevance to cropbooster	Free text
Species group type	Algae Forage grasses Grain staples N2 fixers Oilseed Vegetables Fibres and lignocellulose Root staples Model Plants Other
If other, specify	
Species	Fucus, Laminaria, Porphyra, Ulva Ryegrass, Alfafa, Clover, Sugarcane, Miscanthus Wheat, Barley, Rice, Maize, Sorghum, Rye, Oats, Durum wheat, Millet, Field bean, Soybean, Lupin, Pea, Clover Sunflower, Soybean, Rapeseed, olive, maize Tomato, leafy vegetables (spinach), Lettuce, Brassicas, Pea, Carrots, Parsnip, Grapes, Hemp, Poplar, Willow, Miscanthus, Switchgrass, Douglas Sitka, Eucalyptus, Spruce, Potato, Sugarbeet, Onion Arabidopsis, Tobacco, Rice, Spinach, Maize Grape, Pome, Citrus,

Fig.3 Extract from the construction of columns for common data collection. Current updated version: See Annexe 1

This section consists of preliminary information common between subtasks 1.2-1.4- These columns for data collection will be used as the basis for a clickable survey. Based on the choices made in this section, survey participant will be redirected to the specific subtask the entry is related to in the following section. The data entered in the common fields serve as a platform to integrate the final excel file generated, as well as identify and link commonalities between subtasks.

Section 2, specific to WP1.3, Nutritional quality

The topics in section 2 were assigned to the partners within the subtask 1.3, within their areas of expertise.

L1	L2 (CLASS)	L3 (TYPES OF NUTRIENT)	L4 (Categories within nutrient type)	L5 (factors affecting nutritional quality)
nutritional	Protein	Amino acids	isoleucine	Sulfur deficiency
quality			leucine lysine	Nitrogen deficiency Digestibility
			methionine	Stress: other
			phenylalanine	Heat stress
			threonine	Drought stress
			valine	Fermentation properties
			Argenine	
			tryptophan	
			enzymes	
			Gliadines/Glutenines	
			Other	
nutritional	Carbohydrate	Sugars	Monosaccharides	Stress: UV radiation
quality			Disaccharide	Stress: light intensity and photoperiod
			Polyols	Stress: Water high or low

Fig.3 Extract from the construction of levels specific within the subtask 1.3- Nutritional quality. Current updated version: See Annexe 2

This section consists of 5 levels specific to task 1.3- Level 1 selects the megatrait (yield, nutritional quality or sustainability) Level 2 identifies nutrient class, Level 3 and 4 lists categories and sub categories within each nutrient type. Level 5 identifies the factors which influence the nutritional quality. The aim of this data collection strategy is to precisely identify the role of each trait selected within a specific context of plant nutrition, which will serve as the basis for the report in task 1.5.

Construction of a survey

Based on the input from the common columns and the levels specific within each subtask, a data collection survey is being designed.

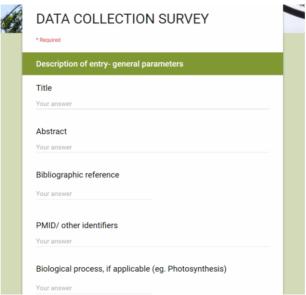


Fig.4 Extract from the current version of the data collection survey.

The survey is currently being developed, with input from all affiliated partners. A final version of the survey ready for data collection for subtask 1.3 is expected to be launched by the second week of July, 2019.

6.Deliverables

The following WP1 1 Task 1.3- specific deliverables are planned:

Number	Deliverable Title	Lead beneficiary	Туре	Dissemination level	Delivery month
D 1.4	Preparatory documents ready for discussions during workshop with (core) SHG on nutritional improvement	UCPH	Report	Public	5
D1.5	Digested outcome and recommendations of the workshop regarding nutritional improvement	UCPH	Report	Public	8

7. Annexes

Annexe 1

Column	Column	Column 'choices'
	information	
Scale (by climate)		Mediterranean, humid subtropical, marine, humid continental, subarctic, tundra and highland, other
If other, specify		
Relevance to cropbooster	Eg. Increased canopy cover, increases biomass	Free text
Species group type	Eg. Algae, forage grasses	Algae Forage grasses Grain staples N2 fixers Oilseed Vegetables Fibres and lignocellulose Root staples Model Plants Other
If other, specify		
Species	(can this be spit per species group type?)	Fucus, Laminaria, Porphyra, Ulva Ryegrass, Alfafa, Clover, Sugarcane, Miscanthus Wheat, Barley, Rice, Maize, Sorghum, Rye, Oats, Durum wheat, Millet, Field bean, Soybean, Lupin, Pea, Clover Sunflower, Soybean, Rapeseed, olive, maize Tomato, leafy vegetables (spinach), Lettuce, Brassicas, Pea, Carrots, Parsnip, Grapes, Hemp, Poplar, Willow, Miscanthus, Switchgrass, Douglas Sitka, Eucalyptus, Spruce, Potato, Sugarbeet, Onion Arabidopsis, Tobacco, Rice, Spinach, Maize Grape, Pome, Citrus, Olive, Strawberry, Raspberry, other
If other, specify		
Method summary*	Technologies employed to achieve y/n/s effect	Conventional Breeding Populations/Mapping, Magic, Diversity Sets Genome Availble MAS GWAS Mutant Populations Tagged populations Mutagenesis Epimutation TILLING Transposon Mobilisation Metabolic design Conventional GMO

	1	
		Gene Editing
		Plastid transformation
		Synthetic Biology
		Modelling
		Phenotyping
		Speed Breeding
		other
If other, specify		
Yield benefit**		Yes/ no
Yield benefit- how**		Free text
Nutrition benefit**		Yes/no
Nutrition benefit-		Free text
how**		
Sustainability		Yes/no
benefit**		· ·
Sustainability benefit		Free text
-how**		
Biological process	Eg. respiration	TBD
Genetic pathway (if	8	Free text
applicable)		1.55
Genes involved		Free text
Orthologues?		Yes/no
Orthologues in which		Free text
crops		1.55 15.11
Bibliographic		Free text
reference(s)		Tree text
title		Free text
abstract		Free text
uniprot		Free text
PMID		Free text
Transferability		Yes/ no
potential		- Franchout
Comments on		Free text
transferability	CDICDD C140	Fortist
What technology	CRISPR, GMO	Free text
would make this		
example		
transferable?		
General comments		

^{*}This would help build into the technical annexe

^{**}This will determine correlations and tradeoffs for WP 1.5

Annexe 2

L1	L2 (CLASS)	L3 (TYPES OF NUTRIENT)	L4 (Categories within nutrient type)	L5 (factors affecting nutritional quality)
nutritional quality	Protein	Amino acids	isoleucine leucine lysine methionine phenylalanine threonine valine Argenine tryptophan enzymes Gliadines/Glutenines Other	Sulfur deficiency Nitrogen deficiency Digestibility Stress: other Heat stress Drought stress Fermentation properties
nutritional quality	Carbohydrate	Sugars Oligosaccharides	Monosaccharides Disaccharide Polyols	Stress: UV radiation Stress: light intensity and photoperiod Stress: Water high or low Stress: heat Stress: high nitrogen

	1	1	* *	EUROPEAN UNION HORIZON 20. AND INNOVATION PROGRAMMI	FUNDER
		Polysaccharides	Starch**** Non Starch	GRANT AGREEMENT 81769 GE Ge bic Me Bic Sul Nit Dig	enetic variation enes affecting esynthesis/regulation/transport/ etabolism emass allocation lfur deficiency erogen deficiency gestibility ermentation properties
			Other	Str	ess- other
nutritional quality	Oil and fats	sterols saturated fatty acids- lauric saturated fatty acids-	myristic	hea	ructural characteristics Stability- at ructural characteristics Stability-
			palmitic stearic oleic	ligh Str	•
		unsaturated fatty acid-	linoleic α linoleic		olecular characteristics Antioxidant pacity
		long chain polyunsaturated fatty acids monohydroxy fatty acid derivatives		Acc Acc	cumulation- storage root cumulation- seed cumulation- shoot system cumulation- root system
			Other		
nutritional quality	Specialized metabolites (secondary metabolites with nutritive	Secondary metabolites-	Organic acids Bioactive comp phenolics, terpenoids glucosinolates	ounds Str Str Str Str	ress: UV radiation ress: light intensity and photoperiod ress: flood ress: drought ress: heavy metal
	role)	Low molecular weight antioxidant:	glutathione ascorbate	Bic Mi int Ge	ress: high nitrogen ostimulants crobes in rhizosphere ra/inter-species variation ones affecting osynthesis/regulation

	ı
***	THIS PROJECT IS FUNDED BY THE
* *	EUROPEAN UNION HORIZON 2020 RESEARCH
* *	AND INNOVATION PROGRAMME LINDER
* *	AND INNOVATION PROGRAMME UNDER
ther * * *	GRANT AGREEMENT 817690

			Other**** GRANT AGRE	ITION PROGRAMME UNDER EMENT 817690
nutritional	Minerals	Macronutrient	Nitrogen	Stress- heat
quality			Phosphorous	Stress-cold
quanty			potassium	Stress- high humidity
			Calcium	Stress- flood
			Sulfur	Stress- drought
			Magnesium	Stress-salinity
			Carbon	Stress-toxicity
			Oxygen	Stress-other
			Macronutrient-	Stress- nutrient overload
			Hydrogen	Stress- Nutrient deficiency
		Micronutrient	Iron	Stress- soil toxins
			Calcium	Stress- soil composition
			Magnesium	Stress- pH
			Chloride	Fertilizer- form
			Potassium	Fertilizer-quality
			Sulphur	Biostimulants
			Manganese	Geographical factors
			Zinc	Bioavailability
			Iodine	Microbes- in rhizosphere
			Selenium	Microbes-fertilizer use efficiency-
				nitrogen fixation
				Sulphur nutrition
				Pathogen toxins
				Intra species cultivar- specific variation
				Uptake and allocation to edible organs
				Membrane transporters
				Efflux proteins
				Organic molecule synthesis
				Stress- transposable elements
			Other	
nutritional	Vitamins	Vitamin A	α-Carotene	Antioxidant potential
quality			β-Carotene	Enzymatic cofactor
			β-Cryptoxanthin	Redox chemistry

***	THIS PROJECT IS FUNDED BY THE
* *	EUROPEAN UNION HORIZON 2020 RESEARCH
* *	AND INNOVATION PROGRAMME UNDER

		T	AND INNOVATION PROGR	RAMME UNDER
		Vitamin B	Thiamine * GRANT AGREEMENT 8176	Enzyme protection
			Riboflavin	Enzyme precursor
			Niacin	Biosynthesis of enzymes
			Pantothenic acid	Root uptake
			Pyridoxal	Membrane transporters
			Biotin	Nitrogen fertilizers
			Folates	Oxidative stress
			Cobalamin	Component of biological pathway
		Vitamin C	Ascorbate	Application of polyamines
		Vitamin E	Tocopherols	Stress-temperature
			Tocotrienols	Stress-other
		Vitamin K	Phylloquinone	Pathogen toxins
				Bioavailability
				digestability
			Other	
nutritional	Anti-nutrients	Proteinaceous antinutrients	Protease inhibitors	intra-species variation
quality		Non proteinaceous antinutrients	Amylase inhibitors	inter-species variation
			Lipase inhibitors	Genes affecting biosynthesis
			Lectins	Genes affecting regulation
			Ribosome Inactivating Proteins	Exogenous factors affecting synthesis
			Phytate	and stability
			Oxalates	Genes affecting
			Phenolics (tannins, gossypol,	biosynthesis/regulation
			other phenolics)	Genes affecting transport/metabolism
			Glucosinolates	Transport/competition with mineral
			Dietary fibre	nutrients
				Enzyme inhibitors
			Other	
			Other	

***	THIS PROJECT IS FUNDED BY THE
* *	EUROPEAN UNION HORIZON 2020 RESEARCH
 , ,	AND INNOVATION PROGRAMINE UNDER

	Τ	T	- * * A	AND INNOVATION PROGR	AMME UNDER Dintra-species variation
	Toxic	Toxic compounds- elements			•
	compounds	Toxic compounds- metabolites	Heavy metals- Arsenic Heavy metals-Lead Heavy metals- Cadmium Cyanogenic glycosides		inter-species variation
					Genes affecting biosynthesis
					Genes affecting regulation
					Exogenous factors affecting synthesis
			Saponins		and stability
			Alkaloids		Genes affecting
			Coumarins		biosynthesis/regulation
					Genes affecting transport/metabolism
					Transport/competition with mineral
					nutrients
					Enzyme inhibitors
			other		
nutritional	Fibre/		Ethanol content		Soluble/insoluble ratio
quality	feedstock		Digestibility		Polymeric structure
			Lignin content		Protein content
			Lipid content		
			Fatty acid content	t	
			Fatty acid compos	sition	
			Alkyl ester conten	nt	
			Butanol content		
			Nutrient use effici	iency (s)	
			Water use efficien	ncy (s)	
			Acid detergent fib	ore	
			Neutral detergent	t fibre	
			Total dietary fiber	r	
			Other		
L	l .	1	I .		