# Improving crop productivity: Photosynthesis only?

Xinyou Yin

(Plant Sciences, Wageningen University & Research, Netherlands)



#### % changes in global production of rice and wheat



(Ziska 2022)



# Yield potential = $PAR \times \alpha \times \varepsilon \times HI$

 $\alpha$  = interception efficiency  $\varepsilon$  = conversion efficiency (RUE) HI = Harvest index (partitioning efficiency)

(Monteith 1977; Long et al. 2006)



# Recap of earlier CropBooster-P reports:

-Modelled impacts of improving photosynthesis parameters

#### Taylor et al. (29 sites, wheat, APSIM)

|                            | CC Scenario | % increase over baseline |
|----------------------------|-------------|--------------------------|
| Default                    | RCP2.6      | 11-22                    |
| photosynthesis             | RCP8.5      | 20-33                    |
| Improved<br>photosynthesis | RCP2.6      | 21-31                    |
|                            | RCP8.5      | 29-41                    |

#### Harbinson & Yin (66 sites, 3 crops, GECROS)

|        | Baseline<br>yield (t/ha) | % increase over baseline |
|--------|--------------------------|--------------------------|
| Wheat  | 9.2                      | 18                       |
| Potato | 13.0                     | 15                       |
| Maize  | 11.3                     | 19                       |



### Further questions to be addressed?

- Is there significant natural variation of photosynthetic  $CO_2$ -assimilation rate (A)?
- If so, can QTL for A be identified?
- What are physiological basis of QTL?
- What else should be co-selected so that the benefit from improved A is maximal?



# Natural variation of photosynthesis



(Ye et al. 2019. Photosynthetica 57: 311-319)



#### Genetic mapping of $A_{max}$ to identify QTL (quantitative trait locus)



(Adachi et al. 2011. JXB 62: 1927-1938)

AGENINGEN UNIVERSITY

WAGENINGENUR

#### Variation of photosynthesis may be related to N uptake



#### Variation of photosynthesis may be related to N uptake



13 introgression lines

(Gu et al. 2012. JXB 63: 5137–5153)

WAGENINGEN UNIVERSITY WAGENINGEN UR

# Fine (molecular) mapping of photosynthesis



#### Physiological evidence for sink feedback effect on photosynthesis



WAGENINGENUR

#### A whole-crop physiology of yield hierarchy





#### GECROS modelled advantage (%) from trait improvement by 20%

| Trait type                                              | Parameter                                         | Advantage over the |       |
|---------------------------------------------------------|---------------------------------------------------|--------------------|-------|
|                                                         |                                                   | baseline (%)       |       |
|                                                         |                                                   | RUE                | Yield |
| Photosynthetic                                          | Maximum Rubisco activity (XVcmax)                 | 0.2                | 0.0   |
|                                                         | Maximum electron transport rate ( $\chi_{Jmax}$ ) | 3.7                | 5.0   |
|                                                         | PSII light-use efficiency ( $\Phi_{2LL}$ )        | 2.8                | 3.0   |
|                                                         | Stomatal conductance $(g_s)$                      | 0.8                | 1.0   |
|                                                         | Mesophyll conductance ( $\chi_{gm}$ )             | 0.8                | 1.0   |
|                                                         | TPU limitation                                    | 1.1                | 1.3   |
|                                                         | All photosynthetic parameters                     | 14.0               | 13.0  |
| Morpho-physiological                                    |                                                   | 6.9                | 6.7   |
| Nitrogen uptake                                         |                                                   | 10.7               | 14.6  |
| Photosynthetic + morpho-physiological                   |                                                   | 21.9               | 19.1  |
| Photosynthetic + morpho-physiological + nitrogen uptake |                                                   | 37.2               | 39.1  |



# Empirical evidence for the importance of $A_{low}$

Correlation with biomass (204 rice genotypes from 67 countries)



(Qu et al. 2017. Plant Physiology 175: 248-258)



# Summary points

- Large phenotypic variations (often > 2-fold) exist for photosynthesis
  - much of the basis of photosynthesis-QTL resides in genes controlling nitrogen use, source-sink relations, leaf morphology;
- Crop modelling showed that improving photosynthesis can enhance yield, but under-studied electron transport parameters were much more effective than the commonly studied  $A_{max}$ .
- To increase yield, multiple parameters should be improved synergistically, allowing for high canopy photosynthesis and duration.
- Proportionally increased root nitrogen uptake is required to significantly improve yield.



### Improving crop productivity: via photosynthesis only?

- Not really; others (morpho-physiological traits and root N uptake) should be co-selected.
- Of the real photosynthesis traits, selecting for high  $A_{low}$  (instead of  $A_{max}$ ) should be a priority.





#### % of increase relative to the $C_3$ standard cultivar, 31-year weather data

| Production level |                                  | Poter   | ntial |
|------------------|----------------------------------|---------|-------|
| Climate          |                                  | Present | 2050ª |
| Site             | Los Baños, Philippines (tropics) | 38.0    | 23.1  |
|                  | Nanjing, China (subtropics)      | 33.0    | 21.9  |
|                  | Shizukuishi, Japan (temperate)   | 39.8    | 25.4  |

Yin & Struik 2017. J Exp Bot 68: 2345-2360.



| Trait type    | Parameter ª                     | Parameter values |          | Advantage over<br>the baseline (%) <sup>b</sup> |         |
|---------------|---------------------------------|------------------|----------|-------------------------------------------------|---------|
|               |                                 | Baseline         | Improved | RUE                                             | Biomass |
| Morpho-       | 7 Leaf angle                    | 65               | 52       | -0.3                                            | 0.0     |
| physiological | 8 $k_{\rm N}$ : $k_{\rm L}$     | 0.80             | 0.96     | 2.4                                             | 2.5     |
|               | 9 Stay-green <sup>d</sup>       | Baseline         | Improved | 1.6                                             | 2.1     |
|               | 10 SLA                          | 0.030            | 0.036    | -1.9                                            | -1.8    |
|               | 11 Non-leaf tissue <sup>₄</sup> | Baseline         | Improved | 2.8                                             | 3.1     |

