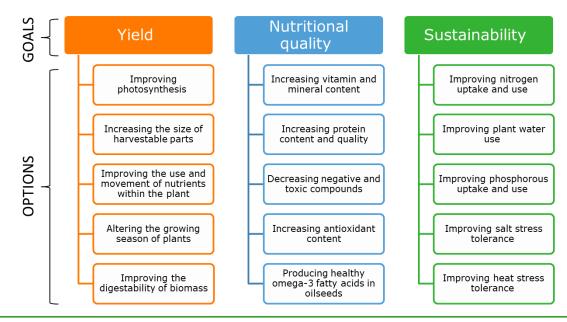
CropBooster-P WP2

Plant breeding priorities impacts and issues: Insights from experts across the food system

A collaboration between

This session

- 20 mins Recap of main findings of WP2
- 20 mins WP2+
 - Further consumer insights
 - Simulating impacts through cognitive mapping
- 10 mins Questions and discussion



What we set out to do in WP2

Assess the **potential economic, social and environmental impact** of our toolbox of plant improvement options for improving yield, sustainability and nutritional quality.

Toolbox of "cropboosting" options compiled by leading plant scientists

Our approach: Ask food system experts

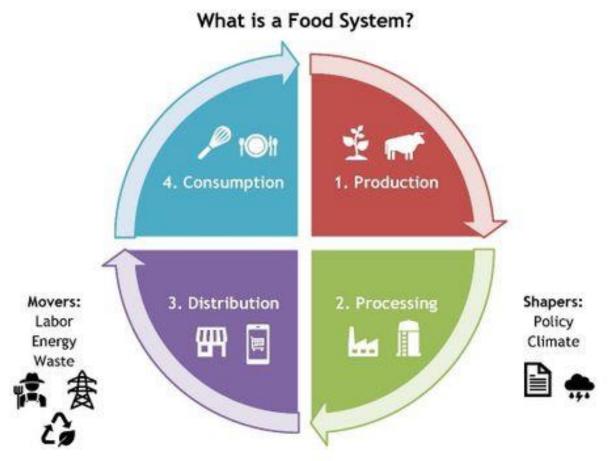
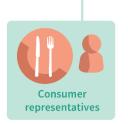


Image: Sustainable Food Center

Our Approach: Ask with a robust mixed methodology





Manuscript that integrates findings currently under review with Nature Food

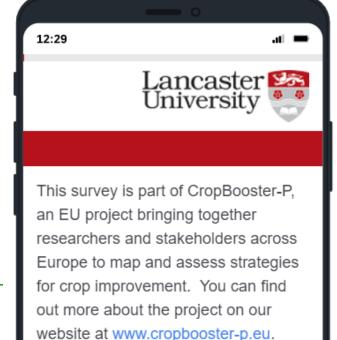
Included in D2.4

чечеторитент апи чертоуттен

A lot of this the work of our researchers

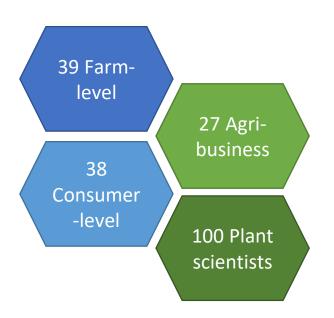
- Stacia Stetkiewicz
- Jonathan Menary
- Abhishek Nair

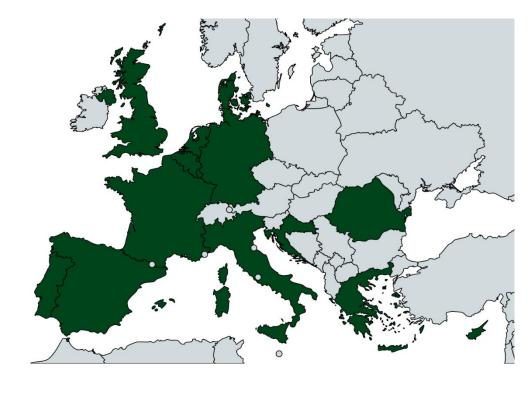
Survey



Horizon 2020 European Union funding for Research & Innovation

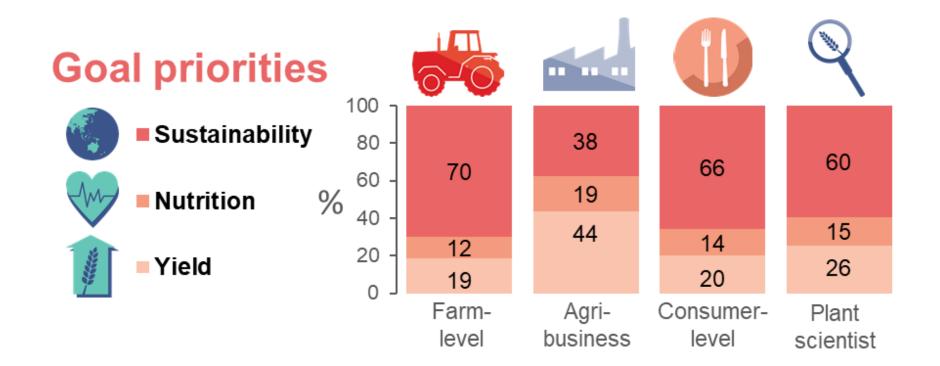
Survey


- Aim to provide a quantitative overview of the priorities
- Open online questionnaire (English, French, German translation)
- More than 200 experts in the same domains (farmer, business, consumer) responded



Survey uptake


- Online April May 2020
- >200 responses


Survey: Prioritising goals

- Sustainability important across the board
- Agribusiness puts yield first
- Farm-level & consumer-level almost say the same thing!

Survey: Prioritising goals

But many respondents wanted it all...

"...All must be sustainable in longer term. These are not mutually exclusive and we should be aiming to have them all"

Please indicate how important you feel this option is for future-proofing European crops:

IMPROVING PLANT WATER USE

Lack of water affects plant productivity and can decrease crop quality.

This option includes a range of breeding technologies that aim to improve uptake of water from soil, reduce water loss in the plant and help it use water more efficiently.

Very unimportant

Unimportant

Neither important nor unimportant

Important

Very important

Don't know

Option priorities		Farm- level	Agri- business	Consumer- level	Plant scientist
Sustainability	Improving plant water use	92	96	97	97
-31	Improving heat stress tolerance	90	73	94	74
	Improving nitrogen uptake and use	85	85	92	85
	Improving phosphorus uptake and use	79	85	80	85
	Improving salt stress tolerance	58	54	68	54

- Importance is high across all options and groups (always>50% & often in the 90s% said it was important or very important)
- Not much difference between groups
- Farm and consumer once again very aligned
- Salt tolerance least frequently thought of as important

Option priorities		Farm- level	Agri- business	Consumer- level	Plant scientist
Yield	Improving photosynthesis	79	69	62	70
3 4 1	Improving digestibility of biomass	50	38	46	39
	Use and movement of nutrients within the plant	53	65	57	66
	Altering growing season of plants	55	65	54	66
	Increasing the size of harvestable parts	41	38	42	39

- Less frequently selected as important compared to sustainability (38-79%)
- Not much difference between groups
- Photosynthesis most frequently thought as of important for every group
- Increasing size of harvestable parts least frequently thought of as important for every group

Option priorities		Farm- level	Agri- business	Consumer- level	Plant scientist
Nutrition	Improving protein content and quality	64	73	69	74
	Increasing vitamin and mineral content	55	65	72	66
	Increasing antioxidant content	58	50	57	51
	Decreasing negative and toxic compounds	51	54	69	54
	Producing healthy omega-3 fatty acids in oilseeds	53	50	60	51

- Less frequently selected as important compared to sustainability, but more frequently than yield in general (50-74%) – even though not often prioritised as a main goal earlier
- Not much difference between groups consumers overall thought these slightly more important?
- Protein seems to be most frequently selected important

Option priorities		Farm- level	Agri- business	Consumer- level	Plant scientist
Sustainability	Improving plant water use	92	96	97	97
-31	Improving heat stress tolerance	90	73	94	74
The second second	Improving nitrogen uptake and use	85	85	92	85
7 1	Improving phosphorus uptake and use	79	85	80	85
	Improving salt stress tolerance	58	54	68	54
Yield	Improving photosynthesis	79	69	62	70
	Improving digestibility of biomass	50	38	46	39
	Use and movement of nutrients within the plant	53	65	57	66
	Altering growing season of plants	55	65	54	66
	Increasing the size of harvestable parts	41	38	42	39
Nutrition	Improving protein content and quality	64	73	69	74
	Increasing vitamin and mineral content	55	65	72	66
	Increasing antioxidant content	58	50	57	51
	Decreasing negative and toxic compounds	51	54	69	54
	Producing healthy omega-3 fatty acids in oilseeds	53	50	60	51

Survey: Summary of Expert Priorities

- A lot of agreement across groups on sustainability as a priority area for plant breeding – particularly between farm-level and consumer-level
- Yield slightly ahead of sustainability for business groups
- Many options considered important and impactful
 - Very few options where less than 50% of people thought they were important

Expert Focus Groups

Expert focus groups

Hosted total of **24 hours of focus groups**, with **35 expert participants**

IMPROVING PHOTOSYNTHESIS

Photosynthesis is the process of turning the energy from the sun into usable energy in the form of sugar.

This option includes a range of breeding technologies that aim to increase the efficiency of photosynthesis.

YIELD

By reducing the amount of energy the plant spends on respiration, scientists were able to increase plant biomass by 40% in tobacco (South et al., 2019).

NUTRITION

INCREASING PROTEIN CONTENT AND QUALITY

Protein is an essential part of the human diet and is made of amino acids. Certain types of protein are useful because they contain high levels of specific amino acids that humans need to build muscle.

This option includes a range of breeding technologies that aim to increase the protein content of crops whilst maintaining yield.

EXAMPLE: Improving protein content of wheat

The NAM-A1 gene has been linked to in wheat (Uauy et al., 2006). By boo possible to improve grain protein co

IMPROVING PLANT WATER USE

Lack of water affects plant productivity and can decrease crop quality.

This option includes a range of breeding technologies that aim to improve uptake of water from soil, reduce water loss in the plant and help it use water more efficiently.

OPTION CARD #16

NAME:

6

Description:

.....

SUSTAINABILIT

EXAMPLE: Improving roots to cope with water

Larger root systems can extract more water and nutrients under stress conditions in crops – improving root systems could improve plant stress tolerance (Ye et al., 2018).

Expert (online) focus groups, Spring 2020

We wrote a methods paper on how to adapt in person focus groups to online and retain robust, high quality data collection

IMPROVING PHOTOSYNTHESIS

Photosynthesis is the process of turning the energy from the sun into usable energy in the form of sugar.

This option includes a range of breeding technologies that aim to increase the efficiency of photosynthesis.

YIELD

EXAMPLE: Improving photosynthesis for more biomass

By reducing the amount of energy the plant spends on respiration, scientists were able to increase plant biomass by 40% in tobacco (South et al., 2019).

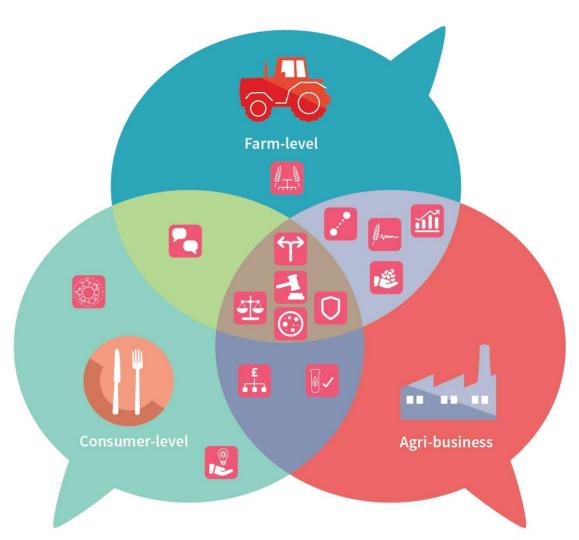
Menary J, Stetkiewicz S, Nair A et al. Going virtual: adapting in-person interactive focus groups to the online environment, Emerald Open Res 2021, **3**:6

(https://doi.org/10.35241/emeraldopenres.14163.2)

Focus Group: Breakdown

Agri-business

(May 2020)



Consumer (June 2020)

Five key shared themes identified

Alternatives

Consider whether other, non-plant breeding interventions can better achieve a societal, economic or environmental goal.

Tradeoffs

Consider the potential risks and benefits of different crop improvement strategies

Resilience

Importance of making agriculture and food more resilient to climatic and other changes

Variation and universality

Some crop improvement strategies are important for specific regions; others are universal

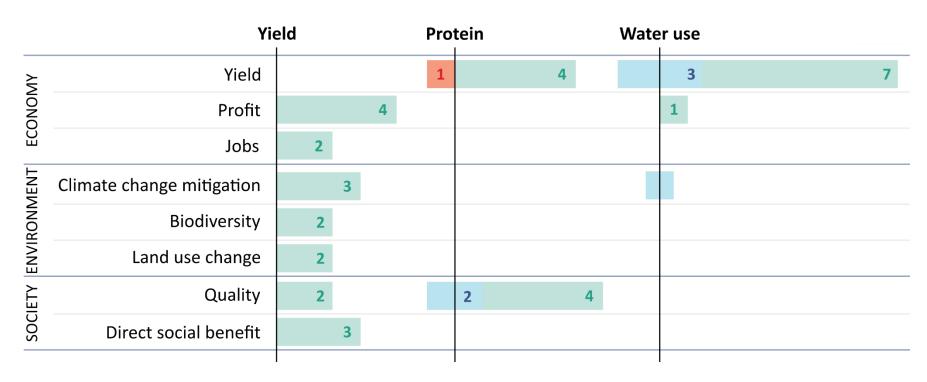
Plant biotechnology and regulation

The legal status of certain plant biotechnology could pose a barrier to certain types of crop improvement

Focus Group: Summary

- Consider if there are options other than plant breeding that work better first – don't make solutions for which there are good alternatives already
- Consider potential trade-offs between traits
- Focus on local or regional crop improvement challenges
- Focus on the many challenges posed by climate change
- Don't solely rely on biotechnology

Literature Review



Rapid Evidence Synthesis

- QUESTION: What does the literature say about the environmental, economic and social impacts of adopting crop boosting technologies?
- **ANSWER:** Not a lot!
- For the top three CropBoosting options: improving water use; improving protein content; and improving yield:
 - 1,398 papers were screened
 - Only ~20 gave contained studies of environmental, social, and economic impacts of breeding

Rapid Evidence Synthesis

Very limited evidence – major research gap and stumbling block for plant research and impact

Takeaways & input to WP5

WP2 Overall: Main takeaways

- 1. Sustainability is a shared clear priority goal for plant breeding although agri-businesses put yield slightly ahead but basically we need multipurpose crops
- 2. The experts agree: Farmers and consumers are well aligned in they're thinking on what is important for future food in the EU and agri-business and farmers have many shared recommendations for the future plant breeding
- 3. Farm, business and consumer experts are moderately in favour of improving crop plants with technology when it makes sense:
 - when it provides a major improvement to an important cause (i.e. climate change), and
 - where there is no better existing alternative
- **4.** There is very little robust evidence on the potential systemic impacts of adopting improved crops this is a major barrier to plant biotechnology adoption. Understanding this is key to make the case and avoid unintended consequences

WP2 Inputs to WP5

- 1. Sustainability is a shared clear priority and a need for multi-purpose crops
- 2. The experts agree
- 3. Farm, business and consumer experts are moderately in favour of improving crop plants with technology when it makes sense:
- 4. There is very little robust evidence on the potential systemic impacts of adopting improved crops

- 1. Helps shapes the plant science direction
- 2. Good, but... continued multi-actor engagement important to support continued agreement
- 3. Plant improvement relating to climate and resilience and plan to frame research in comparison to alternatives
- 4. We need a major interdisciplinary research effort to estimate food system impacts of adopting crop improvements that includes:
 - Agri-environmental science, economics and social science
 - Compelling case studies
 - Benchmarking in comparison to and combined with alternative approaches

WP2+

Horizon 2020 European Union funding for Research & Innovation